PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2575.
Published online 2010 September 18. doi:  10.1107/S1600536810036391
PMCID: PMC2983155

5-Ethyl-3-(4-Fluoro­phenyl­sulfon­yl)-2-methyl-1-benzofuran

Abstract

In the title mol­ecule, C17H15FO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 74.06 (4)° with the mean plane of the benzofuran fragment. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H(...)O and C—H(...)π inter­actions. The crystal structure also exhibits aromatic π–π inter­actions between the benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.629 (2) Å].

Related literature

For the crystal structures of similar 3-(4-fluoro­phenyl­sulfonyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a [triangle],b [triangle]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2575-scheme1.jpg

Experimental

Crystal data

  • C17H15FO3S
  • M r = 318.35
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2575-efi1.jpg
  • a = 8.0042 (1) Å
  • b = 9.7114 (2) Å
  • c = 11.3741 (2) Å
  • α = 66.487 (1)°
  • β = 82.998 (1)°
  • γ = 67.964 (1)°
  • V = 751.10 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 173 K
  • 0.31 × 0.25 × 0.24 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.929, T max = 0.946
  • 13998 measured reflections
  • 3722 independent reflections
  • 3264 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.04
  • 3722 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036391/su2211sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036391/su2211Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Blue-Bio Industry RIC at Dongeui University as a RIC program under the Ministry of Knowledge Economy and the city of Busan.

supplementary crystallographic information

Comment

Many compounds containing a benzofuran ring show important biological properties such as, antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) activities. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1) the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring makes a dihedral angle of 74.06 (4)° with the mean plane of the benzofuran fragment.

The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the O═ S═O unit[ C13–H13···O2i; see Table 1], and by an intermolecular C–H···π interaction between a methyl H-atom and the benzene ring of a neighbouring molecule [C11–H11C···Cgii ; see Table 1]. The molecular packing (Fig. 2) is further stabilized by an aromatic π···π interaction between the benzene rings of neighbouring molecules, with a Cg···Cgiii distance of 3.629 (2) Å (Cg is the centroid of the C2-C7 benzene ring; see Table 1).

Experimental

77% 3-chloroperoxybenzoic acid (381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-ethyl-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (229 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, benzene) to afford the title compound as a colorless solid [yield 82%, m.p. 377-378 K; Rf = 0.68 (benzene)]. Single crystals, suitable for X-ray diffraction, were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement

All the H-atoms were positioned geometrically and refined using a riding model: C–H = 0.95 Å for aryl, 0.99 Å for methylene and 0.98 Å for methyl H atoms, with Uiso(H) = k × Ueq(C), where k = 1.2 for aryl and methylene H-atoms, and 1.5 for methyl H-atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
A view of the C–H···O, C–H..π and π···π interactions (dotted lines) in the crystal structure of the title compound. [Cg denotes the centroid of benzene ring C2-C7; ...

Crystal data

C17H15FO3SZ = 2
Mr = 318.35F(000) = 332
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0042 (1) ÅCell parameters from 6492 reflections
b = 9.7114 (2) Åθ = 2.5–28.2°
c = 11.3741 (2) ŵ = 0.24 mm1
α = 66.487 (1)°T = 173 K
β = 82.998 (1)°Block, colourless
γ = 67.964 (1)°0.31 × 0.25 × 0.24 mm
V = 751.10 (2) Å3

Data collection

Bruker SMART APEXII CCD diffractometer3722 independent reflections
Radiation source: rotating anode3264 reflections with I > 2σ(I)
graphite multilayerRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.0°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −12→12
Tmin = 0.929, Tmax = 0.946l = −15→15
13998 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.102H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2601P] where P = (Fo2 + 2Fc2)/3
3722 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.53064 (4)0.61417 (4)0.69284 (3)0.02667 (10)
F10.02306 (15)0.28696 (12)0.93170 (10)0.0495 (3)
O10.26044 (14)1.07835 (12)0.57702 (10)0.0326 (2)
O20.61844 (14)0.55702 (13)0.59437 (10)0.0352 (2)
O30.63741 (14)0.59481 (13)0.79503 (10)0.0354 (2)
C10.39955 (18)0.81537 (16)0.61842 (12)0.0255 (3)
C20.29794 (17)0.88735 (16)0.49822 (12)0.0261 (3)
C30.26704 (18)0.83239 (17)0.40981 (13)0.0290 (3)
H30.32210.72210.42200.035*
C40.15386 (19)0.94248 (19)0.30318 (13)0.0331 (3)
C50.0762 (2)1.10491 (19)0.28633 (15)0.0381 (3)
H50.00071.17880.21260.046*
C60.1050 (2)1.16199 (18)0.37250 (15)0.0371 (3)
H60.05171.27240.36000.045*
C70.21583 (18)1.04904 (17)0.47799 (13)0.0295 (3)
C80.37157 (18)0.93495 (17)0.66117 (13)0.0285 (3)
C90.1224 (2)0.8853 (2)0.20518 (15)0.0438 (4)
H9A0.00200.95500.16320.053*
H9B0.12250.77450.24960.053*
C100.2631 (2)0.8871 (2)0.10352 (16)0.0450 (4)
H10A0.25960.99750.05620.067*
H10B0.23810.84620.04410.067*
H10C0.38280.81870.14440.067*
C110.4355 (2)0.9415 (2)0.77493 (15)0.0372 (3)
H11A0.49090.83200.83830.056*
H11B0.33311.00270.81270.056*
H11C0.52460.99420.74910.056*
C120.37463 (18)0.51746 (15)0.76302 (12)0.0267 (3)
C130.3061 (2)0.45940 (16)0.69364 (13)0.0314 (3)
H130.34150.47290.60810.038*
C140.1857 (2)0.38180 (17)0.75030 (15)0.0358 (3)
H140.13570.34250.70440.043*
C150.1402 (2)0.36313 (17)0.87531 (15)0.0350 (3)
C160.2084 (2)0.41710 (18)0.94653 (14)0.0344 (3)
H160.17580.39971.03300.041*
C170.32586 (19)0.49745 (17)0.88873 (13)0.0302 (3)
H170.37290.53870.93460.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02624 (17)0.02837 (17)0.02451 (17)−0.00613 (13)−0.00164 (12)−0.01197 (13)
F10.0537 (6)0.0503 (6)0.0491 (6)−0.0316 (5)0.0016 (5)−0.0115 (5)
O10.0343 (5)0.0282 (5)0.0366 (5)−0.0118 (4)0.0075 (4)−0.0151 (4)
O20.0347 (5)0.0364 (5)0.0325 (5)−0.0060 (4)0.0044 (4)−0.0186 (4)
O30.0327 (5)0.0419 (6)0.0319 (5)−0.0118 (4)−0.0074 (4)−0.0135 (4)
C10.0258 (6)0.0270 (6)0.0248 (6)−0.0096 (5)0.0020 (5)−0.0112 (5)
C20.0233 (6)0.0285 (6)0.0239 (6)−0.0093 (5)0.0032 (5)−0.0082 (5)
C30.0272 (6)0.0331 (7)0.0258 (6)−0.0113 (5)0.0014 (5)−0.0101 (5)
C40.0253 (6)0.0458 (8)0.0250 (6)−0.0145 (6)0.0023 (5)−0.0093 (6)
C50.0264 (7)0.0427 (8)0.0291 (7)−0.0079 (6)0.0000 (5)−0.0020 (6)
C60.0296 (7)0.0283 (7)0.0391 (8)−0.0049 (6)0.0051 (6)−0.0050 (6)
C70.0270 (6)0.0294 (7)0.0300 (7)−0.0111 (5)0.0064 (5)−0.0101 (5)
C80.0270 (6)0.0324 (7)0.0300 (7)−0.0134 (5)0.0074 (5)−0.0151 (5)
C90.0389 (8)0.0638 (11)0.0297 (8)−0.0213 (8)−0.0046 (6)−0.0146 (7)
C100.0487 (9)0.0479 (9)0.0336 (8)−0.0118 (8)0.0014 (7)−0.0161 (7)
C110.0411 (8)0.0454 (8)0.0375 (8)−0.0199 (7)0.0083 (6)−0.0262 (7)
C120.0279 (6)0.0235 (6)0.0256 (6)−0.0050 (5)−0.0036 (5)−0.0092 (5)
C130.0392 (8)0.0273 (6)0.0268 (6)−0.0077 (6)−0.0049 (6)−0.0116 (5)
C140.0448 (8)0.0291 (7)0.0369 (8)−0.0136 (6)−0.0068 (6)−0.0135 (6)
C150.0349 (7)0.0283 (7)0.0375 (8)−0.0113 (6)−0.0043 (6)−0.0067 (6)
C160.0341 (7)0.0367 (7)0.0274 (7)−0.0094 (6)−0.0014 (6)−0.0098 (6)
C170.0314 (7)0.0326 (7)0.0264 (6)−0.0080 (5)−0.0042 (5)−0.0128 (5)

Geometric parameters (Å, °)

S1—O31.4366 (10)C9—C101.512 (2)
S1—O21.4380 (10)C9—H9A0.9900
S1—C11.7302 (13)C9—H9B0.9900
S1—C121.7656 (14)C10—H10A0.9800
F1—C151.3542 (17)C10—H10B0.9800
O1—C81.3642 (17)C10—H10C0.9800
O1—C71.3811 (17)C11—H11A0.9800
C1—C81.3652 (18)C11—H11B0.9800
C1—C21.4496 (18)C11—H11C0.9800
C2—C71.3874 (19)C12—C171.3905 (19)
C2—C31.3947 (19)C12—C131.3909 (19)
C3—C41.3932 (19)C13—C141.385 (2)
C3—H30.9500C13—H130.9500
C4—C51.401 (2)C14—C151.380 (2)
C4—C91.510 (2)C14—H140.9500
C5—C61.380 (2)C15—C161.375 (2)
C5—H50.9500C16—C171.384 (2)
C6—C71.382 (2)C16—H160.9500
C6—H60.9500C17—H170.9500
C8—C111.4802 (19)
O3—S1—O2119.42 (6)C4—C9—H9B109.0
O3—S1—C1109.13 (6)C10—C9—H9B109.0
O2—S1—C1107.67 (6)H9A—C9—H9B107.8
O3—S1—C12107.56 (6)C9—C10—H10A109.5
O2—S1—C12107.33 (6)C9—C10—H10B109.5
C1—S1—C12104.80 (6)H10A—C10—H10B109.5
C8—O1—C7107.11 (10)C9—C10—H10C109.5
C8—C1—C2107.43 (12)H10A—C10—H10C109.5
C8—C1—S1126.92 (11)H10B—C10—H10C109.5
C2—C1—S1125.65 (10)C8—C11—H11A109.5
C7—C2—C3119.46 (13)C8—C11—H11B109.5
C7—C2—C1104.60 (12)H11A—C11—H11B109.5
C3—C2—C1135.93 (13)C8—C11—H11C109.5
C4—C3—C2118.67 (13)H11A—C11—H11C109.5
C4—C3—H3120.7H11B—C11—H11C109.5
C2—C3—H3120.7C17—C12—C13121.14 (14)
C3—C4—C5119.60 (14)C17—C12—S1118.90 (11)
C3—C4—C9119.24 (15)C13—C12—S1119.93 (11)
C5—C4—C9121.12 (14)C14—C13—C12119.42 (13)
C6—C5—C4122.72 (14)C14—C13—H13120.3
C6—C5—H5118.6C12—C13—H13120.3
C4—C5—H5118.6C15—C14—C13118.15 (13)
C5—C6—C7116.07 (14)C15—C14—H14120.9
C5—C6—H6122.0C13—C14—H14120.9
C7—C6—H6122.0F1—C15—C16117.89 (14)
O1—C7—C6125.99 (13)F1—C15—C14118.60 (14)
O1—C7—C2110.55 (12)C16—C15—C14123.51 (14)
C6—C7—C2123.46 (14)C15—C16—C17118.15 (13)
O1—C8—C1110.32 (12)C15—C16—H16120.9
O1—C8—C11115.33 (12)C17—C16—H16120.9
C1—C8—C11134.35 (14)C16—C17—C12119.59 (13)
C4—C9—C10112.95 (14)C16—C17—H17120.2
C4—C9—H9A109.0C12—C17—H17120.2
C10—C9—H9A109.0
O3—S1—C1—C8−11.72 (15)C7—O1—C8—C10.22 (15)
O2—S1—C1—C8−142.73 (12)C7—O1—C8—C11179.75 (11)
C12—S1—C1—C8103.23 (13)C2—C1—C8—O1−0.33 (15)
O3—S1—C1—C2168.62 (11)S1—C1—C8—O1179.95 (9)
O2—S1—C1—C237.61 (13)C2—C1—C8—C11−179.74 (15)
C12—S1—C1—C2−76.43 (12)S1—C1—C8—C110.6 (2)
C8—C1—C2—C70.31 (14)C3—C4—C9—C10−86.77 (18)
S1—C1—C2—C7−179.97 (10)C5—C4—C9—C1091.01 (18)
C8—C1—C2—C3−178.43 (15)O3—S1—C12—C1724.49 (13)
S1—C1—C2—C31.3 (2)O2—S1—C12—C17154.16 (11)
C7—C2—C3—C40.01 (19)C1—S1—C12—C17−91.56 (12)
C1—C2—C3—C4178.61 (14)O3—S1—C12—C13−153.99 (11)
C2—C3—C4—C50.9 (2)O2—S1—C12—C13−24.32 (13)
C2—C3—C4—C9178.68 (13)C1—S1—C12—C1389.96 (12)
C3—C4—C5—C6−0.9 (2)C17—C12—C13—C140.7 (2)
C9—C4—C5—C6−178.63 (14)S1—C12—C13—C14179.12 (11)
C4—C5—C6—C7−0.1 (2)C12—C13—C14—C15−0.9 (2)
C8—O1—C7—C6179.79 (13)C13—C14—C15—F1−179.79 (13)
C8—O1—C7—C2−0.01 (15)C13—C14—C15—C16−0.1 (2)
C5—C6—C7—O1−178.77 (13)F1—C15—C16—C17−178.93 (13)
C5—C6—C7—C21.0 (2)C14—C15—C16—C171.4 (2)
C3—C2—C7—O1178.81 (11)C15—C16—C17—C12−1.6 (2)
C1—C2—C7—O1−0.18 (14)C13—C12—C17—C160.6 (2)
C3—C2—C7—C6−1.0 (2)S1—C12—C17—C16−177.84 (10)
C1—C2—C7—C6−179.99 (13)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.403.3143 (17)161
C11—H11C···Cgii0.982.663.491 (2)143

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2211).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett.19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem.13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography