PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1215.
Published online 2010 September 8. doi:  10.1107/S1600536810034689
PMCID: PMC2983151

{2,6-Bis[(4-bromo­phen­yl)imino­meth­yl]pyridine-κ3 N,N′,N′′}trichlorido­chromium(III)

Abstract

In the title compound, [CrCl3(C19H13Br2N3)], the Cr3+ ion is coordinated by the tridentate 2,6-bis­[(4-bromo­phen­yl)imino­meth­yl]pyridine Schiff base ligand in a fac-octa­hedral geometry. The dihedral angles between the pyridine and benzene rings are 23.9 (6) and 70.7 (1)°.

Related literature

For background to Schiff bases as chelating ligands, see: Yin et al. (2010 [triangle]); Yang et al. (2010 [triangle]); Barboiu et al. (2009 [triangle]); Rohini et al. (2009 [triangle]); Legrand et al. (2009 [triangle]). For similar zinc complexes, see: Ceniceros-Gomez et al. (2000 [triangle]); Sugiyama et al. (2002 [triangle]); Sun et al. (2009 [triangle]); Gong et al. (2009 [triangle]); Xiao et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1215-scheme1.jpg

Experimental

Crystal data

  • [CrCl3(C19H13Br2N3)]
  • M r = 601.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1215-efi1.jpg
  • a = 13.722 (3) Å
  • b = 10.111 (2) Å
  • c = 18.905 (3) Å
  • β = 124.702 (12)°
  • V = 2156.4 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.62 mm−1
  • T = 296 K
  • 0.20 × 0.13 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.457, T max = 0.689
  • 11189 measured reflections
  • 4177 independent reflections
  • 2279 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.153
  • S = 0.97
  • 4177 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034689/ng5023sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034689/ng5023Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NWU Graduate Experimental Research Funds (project No. 09YSY22) for financial support.

supplementary crystallographic information

Comment

Schiff bases have often been used as chelating ligands in coordination chemistry (Yin et al. (2010); Yang et al. (2010); Rohini et al. (2009): Legrand et al. (2009)). We report here the crystal structure of the title new chromium complex with the chelating Schiff base ligand 2, 6-bis [1-(4-bromophenylimino)] pyridine The Cr atom in the complex is six-coordinated by one pyridine N and two imine N atoms of the Schiff base ligand, and by two bromide atoms, forming tetrahedral geometry (Fig.1). The dihedral angle between the pyridine and the benzene rings is 23.9 (6) ° and 70.7 (1) °. The bond lengths (Table 1) related to the Cr atom are comparable to those observed in similar chromium complexes (Sugiyama et al. (2002); Sun et al. (2009); Gong et al. (2009); Xiao et al. (2010)).

Experimental

2,6-bis[1-(4-bromophenylimino)]pyridine(0.0226 g, 0.05 mmol), and CrCl3?6H2O (0.0139 g, 0.05 mmol) were mixed and stirred in ethanol(10 ml) for 2 min and then heated in a stainless steel reactor with Teflon liner at 353 K for 72 h. After cooling at 5 K per hour, green crystals were obtained.

Refinement

H atoms were positioned geometrically(C—H = 0.93 Å) and refined using a riding model, with Uiso (H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex, showing 50% probability displacement ellipsoids.

Crystal data

[CrCl3(C19H13Br2N3)]F(000) = 1172
Mr = 601.49Dx = 1.853 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1555 reflections
a = 13.722 (3) Åθ = 2.4–19.9°
b = 10.111 (2) ŵ = 4.62 mm1
c = 18.905 (3) ÅT = 296 K
β = 124.702 (12)°Block, green
V = 2156.4 (7) Å30.20 × 0.13 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer4177 independent reflections
Radiation source: fine-focus sealed tube2279 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 25.9°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→13
Tmin = 0.457, Tmax = 0.689k = −12→12
11189 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.153w = 1/[σ2(Fo2) + (0.0769P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4177 reflectionsΔρmax = 0.61 e Å3
254 parametersΔρmin = −0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr10.28797 (8)0.86124 (8)0.64659 (6)0.0434 (3)
Br10.69677 (8)0.65971 (9)1.11306 (5)0.0892 (3)
Br20.00271 (10)0.39656 (7)0.26880 (5)0.1018 (4)
Cl10.31007 (19)0.63611 (14)0.66454 (12)0.0757 (6)
Cl20.44502 (15)0.87626 (17)0.63412 (11)0.0630 (5)
Cl30.12377 (15)0.86383 (17)0.65121 (11)0.0656 (5)
N10.3903 (4)0.9528 (4)0.7728 (3)0.0483 (12)
N20.2615 (4)1.0541 (4)0.6191 (3)0.0449 (11)
N30.1766 (4)0.8645 (4)0.5113 (3)0.0463 (12)
C10.4323 (7)0.7618 (7)0.8620 (4)0.0691 (19)
H10.36790.71970.81450.083*
C20.5019 (8)0.6955 (7)0.9398 (5)0.077 (2)
H20.48390.60840.94400.092*
C30.5961 (6)0.7561 (7)1.0101 (4)0.0632 (18)
C40.6215 (6)0.8848 (7)1.0040 (4)0.071 (2)
H40.68500.92691.05220.085*
C50.5537 (6)0.9535 (7)0.9267 (4)0.0658 (18)
H50.57211.04070.92320.079*
C60.4597 (5)0.8921 (6)0.8557 (4)0.0480 (14)
C70.3845 (6)1.0794 (6)0.7687 (4)0.0560 (16)
H70.42411.13020.81850.067*
C80.3151 (5)1.1420 (5)0.6847 (4)0.0501 (15)
C90.2975 (6)1.2779 (6)0.6666 (4)0.0571 (17)
H90.33291.33980.71090.069*
C100.2260 (6)1.3180 (6)0.5810 (4)0.0591 (17)
H100.21341.40780.56800.071*
C110.1731 (5)1.2261 (6)0.5144 (4)0.0531 (16)
H110.12581.25300.45730.064*
C120.1932 (5)1.0924 (5)0.5360 (3)0.0424 (13)
C130.1483 (5)0.9800 (6)0.4780 (4)0.0480 (14)
H130.10070.99170.41870.058*
C140.1391 (5)0.7505 (5)0.4560 (3)0.0436 (14)
C150.1856 (6)0.7279 (6)0.4095 (4)0.0498 (15)
H150.24360.78370.41520.060*
C160.1458 (7)0.6218 (6)0.3541 (4)0.0623 (19)
H160.17690.60530.32220.075*
C170.0601 (7)0.5402 (6)0.3461 (4)0.0626 (19)
C180.0162 (7)0.5603 (7)0.3942 (5)0.077 (2)
H18−0.04050.50310.38910.092*
C190.0562 (6)0.6658 (6)0.4505 (5)0.070 (2)
H190.02770.67960.48420.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.0463 (6)0.0347 (5)0.0413 (5)−0.0011 (4)0.0203 (5)−0.0050 (4)
Br10.0738 (6)0.1233 (8)0.0643 (5)0.0183 (5)0.0356 (5)0.0310 (5)
Br20.1720 (11)0.0517 (5)0.0608 (5)−0.0254 (5)0.0540 (6)−0.0206 (4)
Cl10.1130 (17)0.0359 (9)0.0707 (12)0.0020 (9)0.0479 (12)−0.0021 (8)
Cl20.0507 (10)0.0704 (11)0.0663 (11)0.0064 (9)0.0324 (9)0.0027 (8)
Cl30.0572 (11)0.0812 (12)0.0614 (10)−0.0099 (9)0.0355 (9)−0.0088 (9)
N10.055 (3)0.037 (3)0.044 (3)−0.002 (2)0.023 (3)−0.006 (2)
N20.047 (3)0.036 (3)0.042 (3)−0.001 (2)0.020 (2)−0.005 (2)
N30.047 (3)0.041 (3)0.041 (3)−0.004 (2)0.018 (3)−0.007 (2)
C10.070 (5)0.064 (4)0.055 (4)−0.006 (4)0.024 (4)−0.001 (4)
C20.098 (6)0.056 (4)0.067 (5)−0.003 (4)0.041 (5)0.010 (4)
C30.058 (5)0.077 (5)0.047 (4)0.013 (4)0.026 (4)0.004 (4)
C40.061 (5)0.086 (5)0.046 (4)−0.012 (4)0.019 (4)−0.010 (4)
C50.059 (4)0.065 (4)0.049 (4)−0.011 (4)0.017 (4)0.000 (3)
C60.045 (4)0.046 (3)0.047 (4)0.002 (3)0.022 (3)−0.002 (3)
C70.058 (4)0.053 (4)0.044 (4)−0.002 (3)0.021 (3)−0.011 (3)
C80.048 (4)0.039 (3)0.049 (4)−0.004 (3)0.020 (3)−0.006 (3)
C90.060 (4)0.038 (3)0.054 (4)0.002 (3)0.022 (4)−0.002 (3)
C100.066 (5)0.030 (3)0.071 (5)−0.003 (3)0.033 (4)−0.002 (3)
C110.049 (4)0.042 (3)0.058 (4)0.002 (3)0.024 (3)0.006 (3)
C120.043 (4)0.036 (3)0.042 (3)−0.002 (3)0.020 (3)−0.005 (3)
C130.042 (4)0.054 (4)0.040 (3)−0.006 (3)0.019 (3)−0.010 (3)
C140.047 (4)0.042 (3)0.033 (3)−0.005 (3)0.017 (3)−0.009 (3)
C150.063 (4)0.042 (3)0.046 (4)−0.004 (3)0.033 (3)−0.002 (3)
C160.097 (6)0.044 (4)0.057 (4)0.003 (4)0.050 (4)0.001 (3)
C170.094 (6)0.040 (3)0.036 (3)0.002 (4)0.026 (4)−0.002 (3)
C180.079 (5)0.060 (5)0.077 (5)−0.024 (4)0.036 (5)−0.023 (4)
C190.068 (5)0.066 (5)0.084 (5)−0.016 (4)0.048 (5)−0.021 (4)

Geometric parameters (Å, °)

Cr1—N21.997 (4)C5—H50.9300
Cr1—N32.105 (5)C7—C81.451 (8)
Cr1—N12.170 (5)C7—H70.9300
Cr1—Cl12.2959 (17)C8—C91.403 (8)
Cr1—Cl22.3025 (19)C9—C101.394 (8)
Cr1—Cl32.3042 (19)C9—H90.9300
Br1—C31.893 (6)C10—C111.391 (8)
Br2—C171.886 (6)C10—H100.9300
N1—C71.283 (7)C11—C121.393 (8)
N1—C61.428 (7)C11—H110.9300
N2—C121.349 (7)C12—C131.450 (7)
N2—C81.353 (7)C13—H130.9300
N3—C131.277 (7)C14—C151.369 (7)
N3—C141.439 (6)C14—C191.379 (8)
C1—C21.387 (9)C15—C161.377 (8)
C1—C61.394 (8)C15—H150.9300
C1—H10.9300C16—C171.372 (9)
C2—C31.363 (9)C16—H160.9300
C2—H20.9300C17—C181.361 (9)
C3—C41.369 (9)C18—C191.381 (8)
C4—C51.392 (9)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.370 (8)
N2—Cr1—N376.68 (18)C1—C6—N1117.1 (6)
N2—Cr1—N177.16 (18)N1—C7—C8118.8 (5)
N3—Cr1—N1153.84 (18)N1—C7—H7120.6
N2—Cr1—Cl1174.56 (14)C8—C7—H7120.6
N3—Cr1—Cl197.97 (13)N2—C8—C9119.5 (5)
N1—Cr1—Cl1108.18 (14)N2—C8—C7113.1 (5)
N2—Cr1—Cl287.19 (14)C9—C8—C7127.4 (6)
N3—Cr1—Cl287.05 (14)C10—C9—C8118.5 (6)
N1—Cr1—Cl291.55 (14)C10—C9—H9120.7
Cl1—Cr1—Cl291.60 (7)C8—C9—H9120.7
N2—Cr1—Cl387.83 (14)C11—C10—C9121.1 (6)
N3—Cr1—Cl389.83 (14)C11—C10—H10119.5
N1—Cr1—Cl389.31 (14)C9—C10—H10119.5
Cl1—Cr1—Cl393.18 (7)C10—C11—C12118.0 (6)
Cl2—Cr1—Cl3174.62 (7)C10—C11—H11121.0
C7—N1—C6118.4 (5)C12—C11—H11121.0
C7—N1—Cr1112.3 (4)N2—C12—C11120.7 (5)
C6—N1—Cr1129.3 (4)N2—C12—C13111.7 (5)
C12—N2—C8122.2 (5)C11—C12—C13127.6 (5)
C12—N2—Cr1119.1 (4)N3—C13—C12117.7 (5)
C8—N2—Cr1118.6 (4)N3—C13—H13121.2
C13—N3—C14119.5 (5)C12—C13—H13121.2
C13—N3—Cr1114.8 (4)C15—C14—C19120.9 (5)
C14—N3—Cr1125.6 (4)C15—C14—N3119.7 (5)
C2—C1—C6119.4 (7)C19—C14—N3119.4 (5)
C2—C1—H1120.3C14—C15—C16119.4 (6)
C6—C1—H1120.3C14—C15—H15120.3
C3—C2—C1121.0 (7)C16—C15—H15120.3
C3—C2—H2119.5C17—C16—C15119.7 (6)
C1—C2—H2119.5C17—C16—H16120.1
C2—C3—C4119.4 (6)C15—C16—H16120.1
C2—C3—Br1120.2 (6)C18—C17—C16121.0 (6)
C4—C3—Br1120.3 (6)C18—C17—Br2118.9 (5)
C3—C4—C5120.9 (6)C16—C17—Br2120.1 (5)
C3—C4—H4119.6C17—C18—C19119.8 (7)
C5—C4—H4119.6C17—C18—H18120.1
C6—C5—C4119.7 (6)C19—C18—H18120.1
C6—C5—H5120.1C14—C19—C18119.2 (6)
C4—C5—H5120.1C14—C19—H19120.4
C5—C6—C1119.6 (6)C18—C19—H19120.4
C5—C6—N1123.2 (5)
N2—Cr1—N1—C7−0.1 (4)C7—N1—C6—C5−26.0 (9)
N3—Cr1—N1—C70.2 (7)Cr1—N1—C6—C5154.0 (5)
Cl1—Cr1—N1—C7178.9 (4)C7—N1—C6—C1157.2 (6)
Cl2—Cr1—N1—C786.7 (4)Cr1—N1—C6—C1−22.8 (8)
Cl3—Cr1—N1—C7−88.0 (4)C6—N1—C7—C8179.5 (5)
N2—Cr1—N1—C6179.9 (5)Cr1—N1—C7—C8−0.6 (7)
N3—Cr1—N1—C6−179.8 (4)C12—N2—C8—C91.4 (9)
Cl1—Cr1—N1—C6−1.1 (5)Cr1—N2—C8—C9−180.0 (4)
Cl2—Cr1—N1—C6−93.3 (5)C12—N2—C8—C7−179.9 (5)
Cl3—Cr1—N1—C692.0 (5)Cr1—N2—C8—C7−1.3 (7)
N3—Cr1—N2—C12−0.5 (4)N1—C7—C8—N21.2 (8)
N1—Cr1—N2—C12179.4 (4)N1—C7—C8—C9179.8 (6)
Cl1—Cr1—N2—C129.9 (19)N2—C8—C9—C10−0.7 (9)
Cl2—Cr1—N2—C1287.2 (4)C7—C8—C9—C10−179.2 (6)
Cl3—Cr1—N2—C12−90.8 (4)C8—C9—C10—C11−0.2 (10)
N3—Cr1—N2—C8−179.1 (5)C9—C10—C11—C120.4 (9)
N1—Cr1—N2—C80.8 (4)C8—N2—C12—C11−1.2 (8)
Cl1—Cr1—N2—C8−168.7 (14)Cr1—N2—C12—C11−179.8 (4)
Cl2—Cr1—N2—C8−91.5 (4)C8—N2—C12—C13178.6 (5)
Cl3—Cr1—N2—C890.5 (4)Cr1—N2—C12—C130.0 (6)
N2—Cr1—N3—C130.9 (4)C10—C11—C12—N20.2 (9)
N1—Cr1—N3—C130.6 (7)C10—C11—C12—C13−179.5 (6)
Cl1—Cr1—N3—C13−178.1 (4)C14—N3—C13—C12−176.8 (5)
Cl2—Cr1—N3—C13−86.9 (4)Cr1—N3—C13—C12−1.2 (7)
Cl3—Cr1—N3—C1388.7 (4)N2—C12—C13—N30.8 (7)
N2—Cr1—N3—C14176.2 (5)C11—C12—C13—N3−179.4 (6)
N1—Cr1—N3—C14175.9 (4)C13—N3—C14—C1567.8 (7)
Cl1—Cr1—N3—C14−2.8 (4)Cr1—N3—C14—C15−107.2 (5)
Cl2—Cr1—N3—C1488.4 (4)C13—N3—C14—C19−111.8 (7)
Cl3—Cr1—N3—C14−96.0 (4)Cr1—N3—C14—C1973.1 (7)
C6—C1—C2—C30.3 (11)C19—C14—C15—C162.3 (9)
C1—C2—C3—C40.8 (11)N3—C14—C15—C16−177.3 (5)
C1—C2—C3—Br1−175.3 (5)C14—C15—C16—C170.1 (9)
C2—C3—C4—C5−1.1 (11)C15—C16—C17—C18−2.0 (10)
Br1—C3—C4—C5174.9 (5)C15—C16—C17—Br2178.8 (5)
C3—C4—C5—C60.4 (10)C16—C17—C18—C191.5 (11)
C4—C5—C6—C10.7 (10)Br2—C17—C18—C19−179.3 (5)
C4—C5—C6—N1−176.0 (6)C15—C14—C19—C18−2.9 (10)
C2—C1—C6—C5−1.0 (10)N3—C14—C19—C18176.8 (6)
C2—C1—C6—N1175.9 (6)C17—C18—C19—C140.9 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5023).

References

  • Barboiu, M., Dumitru, F., Legrand, Y.-M., Petit, E. & vander Lee, A. (2009). Chem. Commun. pp. 2192–2194. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin USA.
  • Ceniceros-Gomez, A. E., Barba-Behrens, N., Quiroz-Castro, M. E., Bernes, S., Nöth, H. & Castillo-Blum, S. E. (2000). Polyhedron, 19, 1821–1827.
  • Gong, D. R., Wang, B. L., Bai, C. X., Bi, J. F., Wang, F., Dong, W. M., Zhang, X. Q. & Jiang, L. S. (2009). Polymer, 50, 6259–6264.
  • Legrand, Y.-M., Dumitru, F., Lee, A. V. D. & Barboiu, M. (2009). Supramol. Chem.21, 230–237.
  • Rohini, R., Shanker, K., Reddy, P. M., Ho, Y.-P. & &Ravinder, V. (2009). Eur. J. Med. Chem.44, 3330–3339. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Gottingen,Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sugiyama, H., Aharonian, G., Gambarotta, S., Yap, G. P. A. & Budzelaar, P. H. M. (2002). J. Am. Chem. Soc.124, 12268–12274. [PubMed]
  • Sun, W. H., Zhang, S. & Jie, S. Y. (2009), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101357931, 22 pp.
  • Xiao, L. W., Zhang, M. & Sun, W. H. (2010). Polyhedron, 29, 142–147.
  • Yang, Y. R., Li, W., Huang, X. B., Zhang, L. T., Qin, W., Wu, J., Wang, J. D., Jiang, B. B. & Huang, Z. L. (2010), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101649012, 19 pp.
  • Yin, J., Dasgupta, S. & Wu, J. S. (2010). Org. Lett.12, 1712–1715. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography