PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1274.
Published online 2010 September 18. doi:  10.1107/S1600536810036378
PMCID: PMC2983150

{N,N-Dimethyl-N′-[1-(2-pyrid­yl)ethyl­idene]propane-1,3-diamine}bis(thio­cyanato-κN)­copper(II)

Abstract

In the title complex, [Cu(NCS)2(C12H19N3)], the CuII atom is five-coordinated in a square-pyramidal geometry defined by one pyridine N, one imine N, and one amine N atom of the tridentate Schiff base ligand and two N-bonded thio­cyanate ions (one of the latter occupying the apical site). The three bridging C atoms and the two terminal C atoms of the Schiff base are disordered over two sets of sites, with occupancies of 0.465 (2) and 0.535 (2).

Related literature

For a related structure and background to Schiff bases, see: Xue et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1274-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)2(C12H19N3)]
  • M r = 385.00
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1274-efi1.jpg
  • a = 13.723 (2) Å
  • b = 7.2380 (12) Å
  • c = 18.237 (3) Å
  • β = 103.559 (2)°
  • V = 1760.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 298 K
  • 0.23 × 0.21 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.727, T max = 0.746
  • 13886 measured reflections
  • 3816 independent reflections
  • 2698 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.111
  • S = 1.04
  • 3816 reflections
  • 237 parameters
  • 16 restraints
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036378/hb5636sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036378/hb5636Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University.

supplementary crystallographic information

Comment

Recently, we have reported a copper(II) complex with a Schiff base ligand (Xue et al., 2010). In this paper, a new thiocyanato-coordinated mononuclear copper(II) complex with the Schiff base N,N-dimethyl-N'-(1-pyridin-2-ylethylidene)propane-1,3-diamine, is reported.

The Cu atom in the complex, Fig. 1, is five-coordinate in a square pyramidal geometry, with one pyridine N, one imine N, and one amine N atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with another thiocyanate N atom occupying the apical position. The Cu atom displaced 0.306 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).

Experimental

2-Acetylpyridine (121 mg, 1.0 mmol), N,Ndimethylpropane-1,3-diamine (102 mg, 1.0 mmol), ammonium thiocyanate (76 mg, 1.0 mmol), and copper acetate monohydrate (199.2 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding blue blocks of (I).

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl). The three briding C atoms and the two terminal C atoms of the Schiff base ligand are disordered over two sites, with occupancies of 0.465 (2) and 0.535 (2).

Figures

Fig. 1.
The structure of the title complex with 30% probability displacement ellipsoids.

Crystal data

[Cu(NCS)2(C12H19N3)]F(000) = 796
Mr = 385.00Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2747 reflections
a = 13.723 (2) Åθ = 2.3–24.5°
b = 7.2380 (12) ŵ = 1.48 mm1
c = 18.237 (3) ÅT = 298 K
β = 103.559 (2)°Block, blue
V = 1760.9 (5) Å30.23 × 0.21 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3816 independent reflections
Radiation source: fine-focus sealed tube2698 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→17
Tmin = 0.727, Tmax = 0.746k = −9→9
13886 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0492P)2 + 0.6842P] where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.57 e Å3
16 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.24814 (3)0.82783 (5)0.39009 (2)0.04378 (15)
N10.3853 (2)0.8651 (4)0.36614 (15)0.0459 (7)
N20.2846 (2)1.0789 (4)0.43585 (14)0.0457 (6)
N40.2763 (2)0.7053 (4)0.50065 (18)0.0594 (8)
N50.2289 (2)0.5969 (5)0.33292 (18)0.0624 (8)
S10.2253 (2)0.6298 (3)0.63328 (10)0.1725 (10)
S20.23557 (7)0.28351 (14)0.24673 (6)0.0611 (3)
C10.4337 (3)0.7542 (6)0.3285 (2)0.0647 (10)
H10.40280.64460.30900.078*
C20.5270 (3)0.7936 (7)0.3170 (2)0.0752 (13)
H20.55840.71240.29040.090*
C30.5724 (3)0.9539 (7)0.3454 (2)0.0716 (12)
H30.63580.98350.33880.086*
C40.5236 (3)1.0714 (6)0.3839 (2)0.0601 (10)
H40.55331.18210.40320.072*
C50.4300 (2)1.0238 (5)0.39356 (17)0.0443 (7)
C60.3702 (2)1.1400 (4)0.43399 (18)0.0452 (8)
C70.4155 (3)1.3171 (5)0.4690 (2)0.0701 (12)
H7A0.40901.41040.43070.105*
H7B0.48511.29790.49210.105*
H7C0.38121.35630.50650.105*
N30.0939 (2)0.8665 (4)0.36804 (17)0.0606 (8)0.465 (11)
C80.2202 (3)1.1843 (5)0.4750 (2)0.0684 (11)0.465 (11)
H8A0.21161.30770.45380.082*0.465 (11)
H8B0.25491.19610.52760.082*0.465 (11)
C90.1197 (6)1.1045 (16)0.4713 (5)0.062 (3)0.465 (11)
H9A0.07971.19120.49240.074*0.465 (11)
H9B0.12630.99180.50090.074*0.465 (11)
C100.0677 (7)1.0625 (13)0.3896 (5)0.056 (3)0.465 (11)
H10A0.08861.15170.35660.067*0.465 (11)
H10B−0.00431.07310.38300.067*0.465 (11)
C110.053 (3)0.696 (4)0.396 (2)0.092 (10)0.465 (11)
H11A−0.01850.70580.38730.138*0.465 (11)
H11B0.08120.68380.44960.138*0.465 (11)
H11C0.07050.59030.37050.138*0.465 (11)
C120.066 (3)0.888 (6)0.2842 (6)0.071 (8)0.465 (11)
H12A−0.00530.90540.26780.107*0.465 (11)
H12B0.08490.77890.26110.107*0.465 (11)
H12C0.09980.99310.27000.107*0.465 (11)
N3'0.0939 (2)0.8665 (4)0.36804 (17)0.0606 (8)0.535 (11)
C8'0.2202 (3)1.1843 (5)0.4750 (2)0.0684 (11)0.535 (11)
H8'A0.24151.31240.48030.082*0.535 (11)
H8'B0.22521.13360.52500.082*0.535 (11)
C9'0.1099 (5)1.1713 (11)0.4277 (7)0.077 (3)0.535 (11)
H9'A0.07031.25950.44840.093*0.535 (11)
H9'B0.10911.21120.37680.093*0.535 (11)
C10'0.0573 (6)0.9862 (12)0.4224 (6)0.069 (3)0.535 (11)
H10C0.07110.92780.47170.082*0.535 (11)
H10D−0.01451.00350.40550.082*0.535 (11)
C11'0.036 (2)0.703 (3)0.3837 (17)0.071 (5)0.535 (11)
H11D−0.03460.73310.37200.106*0.535 (11)
H11E0.05690.67020.43600.106*0.535 (11)
H11F0.04670.60090.35310.106*0.535 (11)
C12'0.052 (3)0.896 (5)0.2860 (6)0.071 (7)0.535 (11)
H12D−0.01970.91330.27700.106*0.535 (11)
H12E0.06530.79000.25840.106*0.535 (11)
H12F0.08151.00350.26970.106*0.535 (11)
C130.2546 (3)0.6730 (5)0.5551 (2)0.0572 (9)
C140.2316 (2)0.4674 (5)0.29685 (19)0.0481 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0369 (2)0.0457 (2)0.0496 (2)−0.00511 (18)0.01183 (16)−0.00953 (18)
N10.0412 (15)0.0515 (17)0.0463 (15)−0.0058 (12)0.0131 (12)−0.0059 (12)
N20.0448 (16)0.0426 (16)0.0496 (15)0.0014 (13)0.0109 (12)−0.0037 (12)
N40.066 (2)0.057 (2)0.0533 (18)−0.0049 (15)0.0097 (15)0.0003 (15)
N50.0559 (19)0.0598 (19)0.072 (2)−0.0085 (16)0.0162 (16)−0.0233 (17)
S10.264 (3)0.178 (2)0.1026 (12)−0.0650 (18)0.0974 (15)0.0160 (12)
S20.0560 (6)0.0568 (6)0.0762 (6)−0.0069 (4)0.0269 (5)−0.0187 (5)
C10.055 (2)0.078 (3)0.064 (2)−0.011 (2)0.0212 (19)−0.025 (2)
C20.051 (2)0.107 (4)0.075 (3)−0.005 (2)0.031 (2)−0.023 (2)
C30.042 (2)0.106 (4)0.071 (3)−0.012 (2)0.0205 (19)0.002 (2)
C40.045 (2)0.069 (3)0.064 (2)−0.0139 (19)0.0068 (17)0.003 (2)
C50.0366 (17)0.0494 (19)0.0435 (17)−0.0030 (15)0.0024 (13)0.0060 (15)
C60.0428 (19)0.0389 (18)0.0486 (18)−0.0020 (14)0.0004 (14)0.0025 (14)
C70.062 (2)0.046 (2)0.093 (3)−0.0065 (19)−0.001 (2)−0.012 (2)
N30.0378 (16)0.073 (2)0.069 (2)−0.0027 (15)0.0079 (14)−0.0122 (17)
C80.069 (3)0.059 (2)0.079 (3)0.009 (2)0.023 (2)−0.021 (2)
C90.062 (6)0.061 (7)0.078 (7)0.003 (5)0.047 (5)−0.009 (5)
C100.034 (5)0.066 (7)0.072 (6)0.017 (4)0.019 (4)0.007 (5)
C110.019 (8)0.155 (18)0.096 (19)−0.026 (9)0.003 (9)0.037 (10)
C120.032 (9)0.105 (17)0.065 (12)−0.007 (8)−0.012 (8)0.027 (10)
N3'0.0378 (16)0.073 (2)0.069 (2)−0.0027 (15)0.0079 (14)−0.0122 (17)
C8'0.069 (3)0.059 (2)0.079 (3)0.009 (2)0.023 (2)−0.021 (2)
C9'0.067 (6)0.058 (6)0.126 (10)0.003 (4)0.061 (7)−0.008 (6)
C10'0.058 (5)0.074 (6)0.083 (7)0.005 (4)0.034 (5)0.001 (5)
C11'0.038 (12)0.120 (12)0.053 (6)−0.007 (6)0.007 (8)0.019 (6)
C12'0.050 (13)0.061 (10)0.100 (15)−0.006 (7)0.013 (8)0.010 (9)
C130.066 (2)0.043 (2)0.061 (2)−0.0099 (18)0.0108 (19)0.0024 (18)
C140.0348 (17)0.054 (2)0.0550 (19)−0.0070 (15)0.0103 (14)−0.0051 (17)

Geometric parameters (Å, °)

Cu1—N51.955 (3)N3—C111.494 (9)
Cu1—N22.013 (3)N3—C101.537 (7)
Cu1—N12.047 (3)C8—C91.483 (7)
Cu1—N32.078 (3)C8—H8A0.9700
Cu1—N42.153 (3)C8—H8B0.9700
N1—C11.331 (4)C9—C101.525 (9)
N1—C51.343 (4)C9—H9A0.9700
N2—C61.264 (4)C9—H9B0.9700
N2—C81.472 (4)C10—H10A0.9700
N4—C131.126 (4)C10—H10B0.9700
N5—C141.151 (4)C11—H11A0.9600
S1—C131.600 (4)C11—H11B0.9600
S2—C141.622 (4)C11—H11C0.9600
C1—C21.375 (5)C12—H12A0.9600
C1—H10.9300C12—H12B0.9600
C2—C31.361 (6)C12—H12C0.9600
C2—H20.9300C9'—C10'1.514 (9)
C3—C41.373 (5)C9'—H9'A0.9700
C3—H30.9300C9'—H9'B0.9700
C4—C51.380 (5)C10'—H10C0.9700
C4—H40.9300C10'—H10D0.9700
C5—C61.486 (5)C11'—H11D0.9600
C6—C71.500 (4)C11'—H11E0.9600
C7—H7A0.9600C11'—H11F0.9600
C7—H7B0.9600C12'—H12D0.9600
C7—H7C0.9600C12'—H12E0.9600
N3—C121.494 (9)C12'—H12F0.9600
N5—Cu1—N2169.17 (12)C11—N3—Cu1105.6 (16)
N5—Cu1—N190.84 (12)C10—N3—Cu1111.3 (4)
N2—Cu1—N179.51 (11)N2—C8—C9115.7 (4)
N5—Cu1—N390.46 (12)N2—C8—H8A108.3
N2—Cu1—N395.82 (11)C9—C8—H8A108.3
N1—Cu1—N3152.40 (12)N2—C8—H8B108.3
N5—Cu1—N496.85 (13)C9—C8—H8B108.3
N2—Cu1—N490.64 (11)H8A—C8—H8B107.4
N1—Cu1—N4106.39 (12)C8—C9—C10109.8 (7)
N3—Cu1—N4100.82 (12)C8—C9—H9A109.7
C1—N1—C5117.9 (3)C10—C9—H9A109.7
C1—N1—Cu1128.7 (3)C8—C9—H9B109.7
C5—N1—Cu1113.4 (2)C10—C9—H9B109.7
C6—N2—C8119.9 (3)H9A—C9—H9B108.2
C6—N2—Cu1116.6 (2)C9—C10—N3110.5 (7)
C8—N2—Cu1123.3 (2)C9—C10—H10A109.5
C13—N4—Cu1152.2 (3)N3—C10—H10A109.5
C14—N5—Cu1169.4 (3)C9—C10—H10B109.5
N1—C1—C2123.3 (4)N3—C10—H10B109.5
N1—C1—H1118.4H10A—C10—H10B108.1
C2—C1—H1118.4N3—C11—H11A109.5
C3—C2—C1118.6 (4)N3—C11—H11B109.5
C3—C2—H2120.7H11A—C11—H11B109.5
C1—C2—H2120.7N3—C11—H11C109.5
C2—C3—C4119.2 (4)H11A—C11—H11C109.5
C2—C3—H3120.4H11B—C11—H11C109.5
C4—C3—H3120.4N3—C12—H12A109.5
C3—C4—C5119.4 (4)N3—C12—H12B109.5
C3—C4—H4120.3H12A—C12—H12B109.5
C5—C4—H4120.3N3—C12—H12C109.5
N1—C5—C4121.6 (3)H12A—C12—H12C109.5
N1—C5—C6114.3 (3)H12B—C12—H12C109.5
C4—C5—C6124.1 (3)C10'—C9'—H9'A107.7
N2—C6—C5116.1 (3)C10'—C9'—H9'B107.7
N2—C6—C7125.6 (3)H9'A—C9'—H9'B107.1
C5—C6—C7118.3 (3)C9'—C10'—H10C109.9
C6—C7—H7A109.5C9'—C10'—H10D109.9
C6—C7—H7B109.5H10C—C10'—H10D108.3
H7A—C7—H7B109.5H11D—C11'—H11E109.5
C6—C7—H7C109.5H11D—C11'—H11F109.5
H7A—C7—H7C109.5H11E—C11'—H11F109.5
H7B—C7—H7C109.5H12D—C12'—H12E109.5
C12—N3—C11114 (2)H12D—C12'—H12F109.5
C12—N3—C1098.4 (18)H12E—C12'—H12F109.5
C11—N3—C10122.9 (19)N4—C13—S1178.9 (4)
C12—N3—Cu1102.7 (18)N5—C14—S2179.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5636).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010). Acta Cryst. E66, m1172–m1173. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography