PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2497.
Published online 2010 September 4. doi:  10.1107/S1600536810033374
PMCID: PMC2983149

(E)-Ethyl 2-cyano-3-[5-nitro-2-(pyrrolidin-1-yl)phen­yl]acrylate

Abstract

The title compound, C16H17N3O4, was prepared by the reaction of 5-nitro-2-(pyrrolidin-1-yl)benzaldehyde and ethyl cyano­acetate. The mol­ecular structure adopts an E conformation with respect to the C=C double bond. The five-membered ring has a half-chair conformation, with puckering parameters Q(2)= 0.399 (2) Å and ϕ = 93.1 (3)°. In the crystal, inversion dimers , linked by pairs of C—H(...)O inter­actions, are further connected through C—H(...)N hydrogen bonds. Weak slipped π-π inter­actions occur between symmetry-related benzene rings [centroid–centroid distance = 3.785 (1)Å].

Related literature

For related structures, see: Yapo et al. (2010 [triangle]); Zhang et al. (2009a [triangle],b [triangle]). For reference bond lengths, see: Allen (2002 [triangle]). For ring conformation analysis, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2497-scheme1.jpg

Experimental

Crystal data

  • C16H17N3O4
  • M r = 315.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2497-efi1.jpg
  • a = 8.4137 (3) Å
  • b = 9.9517 (4) Å
  • c = 10.3731 (5) Å
  • α = 73.065 (1)°
  • β = 71.388 (2)°
  • γ = 72.523 (4)°
  • V = 766.56 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 223 K
  • 0.15 × 0.05 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 12261 measured reflections
  • 3925 independent reflections
  • 2436 reflections with I > 3σ(I)
  • R int = 0.04

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.098
  • S = 1.01
  • 2436 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033374/dn2594sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033374/dn2594Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank the Laboratoire de Physique des Inter­actions Ioniques et Moléculaires of Provence University (France) for the use of the diffractometer.

supplementary crystallographic information

Comment

Recently, the synthesis and structure of tricyclic quinoline derivative have been widely investigated (Yapo et al., 2010). We report herein the crystal structure of the title compound C16H17N3O4 (I). In fact, it is an intermediate compound on which chemical reactions will be made to obtain tricyclic quinoline derivative containing in its molecular structure two coupled rings: quinoline ring and pyrrolidine ring.

The molecular structure of the title complex displays a E conformation with respect to the C11═C12 double bond. The bond distance C12— C13=1.436 (2)Å agrees with recently reported structures (Zhang et al., 2009a; Zhang et al., 2009b) and is characteristic of single bond occuring between carbone sp1 and carbone sp2 [C(sp1)—C(sp2)]. All other bond lengths and angles are not unusual (Allen, 2002).

The pyrrolidine ring has half-chair conformation with puckering parameters Q(2)= 0.399 (2)Å and [var phi]= 93.1 (3)° (Cremer & Pople, 1975)

In the crystal packing, centrosymmetrically related molecules are linked by intermolecular C—H···O hydrogen bonding interactions building pseudo dimers which are further connected through C-H···N hydrogen bonds (Table 1 and Figure 2). Weak π-π interactions occur between symmetry related phenyl rings (Centroid-to-centroid = 3.785 (1)Å, interplanar distance= 3.509Å and a slippage of 1.417Å with symmetry code: (i) 2-x,1-y,-z).

Experimental

To a solution of 5-nitro-2-(pyrrolidin-1-yl)benzaldehyde (2, 9.03 mmol) in anhydrous ethanol (25 ml), ethyl cyanoacetate (2.1 ml, 10.1 mmol) was added. Maintained at room temperature and under magnetic agitation, triethylamine (3 ml) was dropped into the solution. The reaction mixture was maintained at room temperature for 30 min then heated to ethanol reflux during 2 h. After cooling, the precipitate was filtred and then washed with ethanol to obtain yellow crystals in 77% yield. The melting point is 457–458 K.

Refinement

The H atoms were geometrically positioned and treated as riding with C—H in the range 0.93–0.98Å and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom.

Figures

Fig. 1.
Molecular view of the title complex with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitary radii.
Fig. 2.
Partial packing view showing the hydrogen bond pattern. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z ]

Crystal data

C16H17N3O4Z = 2
Mr = 315.33F(000) = 332
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4137 (3) ÅCell parameters from 12261 reflections
b = 9.9517 (4) Åθ = 4–29°
c = 10.3731 (5) ŵ = 0.10 mm1
α = 73.065 (1)°T = 223 K
β = 71.388 (2)°Prism, yellow
γ = 72.523 (4)°0.15 × 0.05 × 0.05 mm
V = 766.56 (6) Å3

Data collection

Nonius KappaCCD diffractometerRint = 0.04
graphiteθmax = 29.1°, θmin = 2.1°
[var phi] & ω scansh = 0→11
12261 measured reflectionsk = −12→13
3925 independent reflectionsl = −12→14
2436 reflections with I > 3σ(I)

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(F2) + (0.04P)2 + 0.41P] where P = [max(Fo2,0) + 2Fc2]/3
S = 1.00(Δ/σ)max = 0.0002
2436 reflectionsΔρmax = 0.29 e Å3
208 parametersΔρmin = −0.19 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O40.24506 (16)0.75552 (14)0.34637 (12)0.0392
C60.6744 (2)0.54044 (17)0.08814 (16)0.0272
O30.38346 (18)0.74040 (16)0.50501 (13)0.0501
N10.58761 (18)0.70320 (15)−0.12042 (14)0.0318
C110.5357 (2)0.61576 (17)0.18686 (16)0.0288
C100.8072 (2)0.48737 (19)−0.14342 (18)0.0349
O21.03617 (19)0.19215 (16)0.22812 (15)0.0536
C140.3815 (2)0.71447 (18)0.39891 (17)0.0335
C50.6844 (2)0.58161 (18)−0.05898 (16)0.0281
C70.7910 (2)0.41913 (18)0.13881 (17)0.0302
C80.9117 (2)0.33592 (18)0.05070 (18)0.0323
N21.0334 (2)0.21267 (17)0.10625 (17)0.0405
C120.5355 (2)0.63394 (17)0.31088 (16)0.0295
O11.1330 (2)0.13387 (17)0.02781 (17)0.0640
C130.6834 (2)0.5867 (2)0.36710 (18)0.0355
N30.7983 (2)0.5498 (2)0.41549 (19)0.0528
C90.9177 (2)0.3684 (2)−0.09019 (18)0.0361
C10.6073 (3)0.7384 (2)−0.27297 (18)0.0420
C40.4900 (2)0.83167 (19)−0.06191 (18)0.0374
C16−0.0507 (3)0.8668 (2)0.3594 (2)0.0538
C150.0917 (3)0.8417 (3)0.4249 (2)0.0524
C20.4880 (3)0.8854 (2)−0.2995 (2)0.0520
C30.4940 (3)0.9553 (2)−0.18931 (19)0.0458
H1110.42990.65790.16010.0408*
H1010.81120.5097−0.24020.0501*
H710.78500.39220.23550.0416*
H911.00050.3059−0.14850.0499*
H110.72910.7413−0.32210.0611*
H120.57710.6646−0.30010.0612*
H410.54540.84310.00250.0516*
H420.36870.8243−0.01260.0529*
H161−0.15160.93100.40460.0975*
H162−0.01690.90980.25940.0977*
H163−0.07940.77440.37420.0981*
H1510.11900.93660.42020.0740*
H1520.06630.78750.52210.0730*
H210.52890.9403−0.39270.0751*
H220.36980.8790−0.28550.0754*
H310.60320.9898−0.21800.0663*
H320.39391.0346−0.17430.0659*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0392 (7)0.0457 (8)0.0277 (6)0.0026 (6)−0.0057 (5)−0.0162 (5)
C60.0280 (8)0.0315 (9)0.0230 (8)−0.0089 (7)−0.0040 (6)−0.0078 (6)
O30.0563 (9)0.0652 (10)0.0332 (7)−0.0074 (7)−0.0099 (6)−0.0257 (7)
N10.0394 (8)0.0349 (8)0.0223 (7)−0.0071 (6)−0.0101 (6)−0.0070 (6)
C110.0311 (8)0.0297 (9)0.0234 (8)−0.0071 (7)−0.0044 (6)−0.0054 (6)
C100.0393 (10)0.0416 (10)0.0250 (8)−0.0098 (8)−0.0041 (7)−0.0132 (7)
O20.0579 (9)0.0499 (9)0.0435 (8)0.0042 (7)−0.0192 (7)−0.0063 (6)
C140.0419 (10)0.0331 (9)0.0239 (8)−0.0076 (7)−0.0058 (7)−0.0076 (7)
C50.0286 (8)0.0332 (9)0.0254 (8)−0.0107 (7)−0.0053 (6)−0.0085 (7)
C70.0320 (9)0.0330 (9)0.0259 (8)−0.0091 (7)−0.0056 (7)−0.0073 (7)
C80.0298 (9)0.0312 (9)0.0349 (9)−0.0063 (7)−0.0060 (7)−0.0091 (7)
N20.0365 (9)0.0372 (9)0.0431 (9)−0.0042 (7)−0.0065 (7)−0.0099 (7)
C120.0349 (9)0.0290 (8)0.0238 (8)−0.0086 (7)−0.0063 (7)−0.0045 (6)
O10.0590 (9)0.0562 (10)0.0616 (10)0.0174 (8)−0.0105 (8)−0.0274 (8)
C130.0427 (10)0.0390 (10)0.0266 (9)−0.0133 (8)−0.0060 (8)−0.0086 (7)
N30.0521 (11)0.0654 (12)0.0484 (10)−0.0155 (9)−0.0213 (9)−0.0120 (9)
C90.0359 (10)0.0375 (10)0.0345 (9)−0.0089 (8)−0.0015 (7)−0.0149 (8)
C10.0566 (12)0.0467 (11)0.0233 (9)−0.0082 (9)−0.0149 (8)−0.0069 (8)
C40.0435 (10)0.0360 (10)0.0300 (9)−0.0026 (8)−0.0103 (8)−0.0090 (7)
C160.0431 (11)0.0587 (14)0.0599 (14)−0.0028 (10)−0.0097 (10)−0.0260 (11)
C150.0436 (12)0.0621 (14)0.0447 (12)0.0086 (10)−0.0054 (9)−0.0295 (10)
C20.0677 (14)0.0514 (12)0.0346 (10)−0.0045 (10)−0.0237 (10)−0.0036 (9)
C30.0582 (13)0.0381 (11)0.0362 (10)−0.0049 (9)−0.0159 (9)−0.0027 (8)

Geometric parameters (Å, °)

O4—C141.330 (2)C12—C131.436 (2)
O4—C151.462 (2)C13—N31.145 (2)
C6—C111.460 (2)C9—H910.963
C6—C51.442 (2)C1—C21.511 (3)
C6—C71.394 (2)C1—H110.993
O3—C141.207 (2)C1—H120.982
N1—C51.350 (2)C4—C31.520 (3)
N1—C11.483 (2)C4—H410.976
N1—C41.477 (2)C4—H420.999
C11—C121.350 (2)C16—C151.483 (3)
C11—H1110.955C16—H1610.971
C10—C51.426 (2)C16—H1620.983
C10—C91.363 (2)C16—H1630.977
C10—H1010.955C15—H1511.021
O2—N21.227 (2)C15—H1520.984
C14—C121.484 (2)C2—C31.521 (3)
C7—C81.377 (2)C2—H210.972
C7—H710.948C2—H220.977
C8—N21.448 (2)C3—H311.003
C8—C91.389 (2)C3—H320.972
N2—O11.233 (2)
C14—O4—C15114.97 (14)N1—C1—H11109.3
C11—C6—C5121.29 (14)C2—C1—H11111.6
C11—C6—C7119.04 (14)N1—C1—H12110.4
C5—C6—C7119.46 (14)C2—C1—H12113.0
C5—N1—C1120.85 (14)H11—C1—H12108.5
C5—N1—C4127.13 (13)N1—C4—C3103.67 (14)
C1—N1—C4110.08 (13)N1—C4—H41110.4
C6—C11—C12129.25 (16)C3—C4—H41111.7
C6—C11—H111115.4N1—C4—H42110.9
C12—C11—H111115.3C3—C4—H42110.4
C5—C10—C9122.08 (16)H41—C4—H42109.6
C5—C10—H101118.2C15—C16—H161109.4
C9—C10—H101119.7C15—C16—H162110.6
O4—C14—O3124.77 (16)H161—C16—H162109.5
O4—C14—C12112.45 (14)C15—C16—H163108.3
O3—C14—C12122.77 (16)H161—C16—H163108.3
C6—C5—C10116.84 (15)H162—C16—H163110.7
C6—C5—N1124.27 (15)C16—C15—O4107.71 (16)
C10—C5—N1118.89 (15)C16—C15—H151111.3
C6—C7—C8120.77 (15)O4—C15—H151107.9
C6—C7—H71119.6C16—C15—H152111.9
C8—C7—H71119.6O4—C15—H152107.8
C7—C8—N2119.31 (15)H151—C15—H152110.0
C7—C8—C9120.95 (16)C1—C2—C3103.20 (15)
N2—C8—C9119.74 (15)C1—C2—H21111.2
C8—N2—O2119.06 (15)C3—C2—H21111.1
C8—N2—O1118.37 (16)C1—C2—H22112.1
O2—N2—O1122.55 (16)C3—C2—H22109.2
C14—C12—C11122.22 (15)H21—C2—H22109.9
C14—C12—C13113.25 (14)C2—C3—C4102.37 (16)
C11—C12—C13124.43 (16)C2—C3—H31110.2
C12—C13—N3178.06 (19)C4—C3—H31111.5
C8—C9—C10119.72 (16)C2—C3—H32110.2
C8—C9—H91119.1C4—C3—H32111.6
C10—C9—H91121.2H31—C3—H32110.7
N1—C1—C2103.93 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H152···O2i0.982.503.356 (2)145
C16—H163···N3ii0.982.603.574 (3)172

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2594).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yapo, Y. M., Konan, K. M., Adjou, A., Timotou, A. & Tenon, J. A. (2010). Acta Cryst. E66, o1735. [PMC free article] [PubMed]
  • Zhang, D., Zhang, X. & Guo, L. (2009a). Acta Cryst. E65, o90. [PMC free article] [PubMed]
  • Zhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009b). Acta Cryst. E65, o2351. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography