PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2587–o2588.
Published online 2010 September 18. doi:  10.1107/S1600536810036743
PMCID: PMC2983148

7-[(3,5-Di-tert-butyl-2-hy­droxy­benzyl­idene)amino]-4-methyl-2H-chromen-2-one

Abstract

The title compound, C25H29NO3, is a Schiff base derivative of coumarin 120. There are two structurally similar but crystallographically independent mol­ecules in the asymmetric unit. Both mol­ecules exist in E configurations with respect to the C=N double bonds. The dihedral angles between the coumarin and 3,5-di-tert-butyl-2-hy­droxy­benzyl­idene ring planes are 4.62 (7) and 14.62 (7)° for the two mol­ecules. Intra­molecular O—H(...)N hydrogen bonding involving the O—H groups and the azomethine N atoms generate S(6) rings. In the crystal structure, independent mol­ecules are linked by C—H(...)π inter­actions, with groups of four mol­ecules stacked along the c axis.

Related literature

For the chemistry and catalytic properties of coumarin-derived Schiff base complexes, see: Youssef et al. (2009 [triangle]). For their biological and pharmacological properties, see: Kulkarni et al. (2009 [triangle]); Youssef et al. (2009 [triangle]); Ronad et al. (2008 [triangle]). For their applications as dyes and fluorescent agents, see: Kachkovski et al. (2004 [triangle]); Creaven et al. (2009 [triangle]). For related structures, see: Honda et al. (1996 [triangle]); Aazam et al. (2006 [triangle], 2008 [triangle], 2010 [triangle]); El Husseiny et al. (2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2587-scheme1.jpg

Experimental

Crystal data

  • C25H29NO3
  • M r = 391.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2587-efi1.jpg
  • a = 17.6067 (14) Å
  • b = 9.6853 (5) Å
  • c = 27.237 (3) Å
  • β = 109.832 (6)°
  • V = 4369.2 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.32 × 0.20 × 0.05 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • 29259 measured reflections
  • 8242 independent reflections
  • 3118 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.146
  • S = 0.84
  • 8242 reflections
  • 524 parameters
  • 84 restraints
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036743/sj5038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036743/sj5038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge King Abdulaziz University for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Coumarin-derived Schiff bases are regarded as "privileged ligands" due to their ability to form complexes with different transition metals that can act as catalysts for many different reactions (Youssef et al., 2009). They have been found to exhibit biological and plant regulating activities (Kulkarni et al., 2009; Youssef et al., 2009). They can also act as anti-inflammatory and analgesic agents (Ronad et al., 2008). Several reports of their applications as dyes and fluorescent agents have appeared (Kachkovski et al., 2004; Creaven et al., 2009).

In a continuation of our interest in the synthesis, crystal structure elucidation (Aazam et al., 2006, 2008, 2010), biological activity and photophysical properties of Schiff-base ligands incorporating a coumarin moiety and their metal complexes (El Husseiny et al., 2008), we report here the crystal structure of a newly synthesized coumarin Schiff base derived from 7-amino-4-methyl coumarin and 3,5-di-t-butyl-2-hydroxybenzaldehyde.

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules, A and B (Honda et al. ,1996). The two independent molecules differ in planarity, where molecule A is more planar than molecule B, having dihedral angles between the coumarin and 3,5-di-tert-butyl- 2-hydroxybenzylidene ring planes of 4.64 (7)° and 14.62 (7)° for molecule A and B respectively. The planarity of both molecules is greater than that of the related 4-methyl-7-(salicylideneamino)coumarin Schiff base where the corresponding dihedral angle was 24.0 (1)° (Aazam et al., 2006). The greater planarity of the title compound may explain the higher fluorescence quantum yield of 0.53 observed (compared with Φf = 0.43 for 4-methyl-7-(salicylideneamino) coumarin in DMSO).

The terminal C=O bond distances of 1.203 (4)Å and 1.209 (4)Å agree with 1.2119 (15)Å found in the related compound 4-methyl-7-(salicylideneamino) coumarin (Aazam et al.2006), but are shorter than that of 1.3040 (17)Å found in 8-[(1E)-1-(2-Aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate (Aazam et al., 2010). Intramolecular O—H···N hydrogen bonding involving the O–H groups and the azomethine N atoms generate S(6) rings (Bernstein et al., 1995). In the crystal structure, the independent molecules are linked by C—H···π interactions, with groups of four molecules stacked along the c axis (Fig. 2).

Experimental

3,5-di-tertbutyl-2-hydroxybenzaldehyde (0.26 g, 1.50 mmol) in 20 ml of absolute ethanol was added to a warm solution of 7-amino-4-methyl coumarin (0.35 g, 1.5 mmol) in 30 ml of absolute ethanol. The mixture was refluxed for 3 hrs upon which a yellow solution was formed. The solvent was pumped off by rotary evaporation leaving behind an orange solid shown to be pure by NMR spectroscopy. The product was recrystallized from chloroform by slow evaporation forming orange needles. Yield (68%, 0.4 g, 1.02 mmol).

Refinement

H atoms were positioned geometrically (C–H = 0.93 or 0.96 Å, O–H = 0.82 Å) and refined using a riding model. The Uiso(H) values were set at 1.2Ueq(C aromatic) and 1.5Ueq(C methyl, O).

Figures

Fig. 1.
A view of molecule of molecule A and B. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The packing diagram of the title compound, with displacement ellipsoids displayed at the 30% probability level. The t-butyl substituents on the benzene ring and H atoms not involved in C—H···π interactions (shown ...

Crystal data

C25H29NO3F(000) = 1680
Mr = 391.49Dx = 1.190 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15467 reflections
a = 17.6067 (14) Åθ = 1.2–26.2°
b = 9.6853 (5) ŵ = 0.08 mm1
c = 27.237 (3) ÅT = 296 K
β = 109.832 (6)°Plate, light brown
V = 4369.2 (6) Å30.32 × 0.20 × 0.05 mm
Z = 8

Data collection

Stoe IPDS 2 diffractometer3118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
graphiteθmax = 25.7°, θmin = 1.2°
rotation method scansh = −21→21
29259 measured reflectionsk = −11→11
8242 independent reflectionsl = −32→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.84w = 1/[σ2(Fo2) + (0.0578P)2] where P = (Fo2 + 2Fc2)/3
8242 reflections(Δ/σ)max < 0.001
524 parametersΔρmax = 0.31 e Å3
84 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.71746 (19)0.2973 (3)0.62303 (13)0.0465 (9)
C20.7896 (2)0.2190 (3)0.64044 (13)0.0472 (9)
C30.8653 (2)0.2821 (3)0.65273 (13)0.0479 (9)
C40.8651 (2)0.4252 (3)0.64687 (14)0.0555 (10)
H40.91470.46940.65460.067*
C50.7956 (2)0.5068 (3)0.63012 (14)0.0503 (9)
C60.7225 (2)0.4405 (4)0.61833 (13)0.0503 (9)
H60.67520.49230.60690.060*
C70.9434 (2)0.1987 (3)0.66976 (15)0.0552 (10)
C80.9451 (2)0.1059 (4)0.62451 (17)0.0831 (13)
H8A0.94170.16210.59480.100*
H8B0.90010.04350.61560.100*
H8C0.99450.05410.63480.100*
C90.9506 (2)0.1101 (4)0.71730 (16)0.0850 (13)
H9A0.90570.04760.70910.102*
H9B0.95070.16840.74580.102*
H9C1.00000.05840.72700.102*
C101.0184 (2)0.2909 (4)0.68392 (17)0.0779 (12)
H10A1.01930.35070.71220.093*
H10B1.01690.34540.65420.093*
H10C1.06600.23430.69430.093*
C110.8004 (2)0.6645 (4)0.62607 (17)0.0633 (11)
C120.7749 (3)0.7289 (4)0.66932 (17)0.0899 (14)
H12A0.81050.69820.70270.108*
H12B0.72060.70130.66500.108*
H12C0.77740.82770.66740.108*
C130.8853 (3)0.7151 (5)0.6345 (2)0.1178 (18)
H13A0.90450.67540.60860.141*
H13B0.92020.68800.66860.141*
H13C0.88510.81390.63170.141*
C140.7431 (3)0.7135 (4)0.57389 (16)0.0835 (13)
H14A0.68900.68670.57030.100*
H14B0.75810.67280.54630.100*
H14C0.74600.81230.57200.100*
C150.6386 (2)0.2320 (4)0.60526 (13)0.0487 (9)
H150.59230.28590.59270.058*
C160.5586 (2)0.0272 (3)0.58550 (13)0.0476 (9)
C170.4838 (2)0.0864 (4)0.55885 (14)0.0556 (10)
H170.47840.18180.55570.067*
C180.4178 (2)0.0014 (4)0.53712 (14)0.0536 (10)
H180.36790.04150.51970.064*
C190.4233 (2)−0.1423 (4)0.54042 (13)0.0475 (9)
C200.4982 (2)−0.1965 (3)0.56716 (13)0.0484 (9)
C210.5650 (2)−0.1151 (4)0.59003 (14)0.0530 (9)
H210.6143−0.15560.60850.064*
C220.3565 (2)−0.2352 (4)0.51815 (13)0.0500 (9)
C230.3719 (2)−0.3718 (4)0.52296 (15)0.0629 (11)
H230.3290−0.43210.50850.075*
C240.4500 (2)−0.4303 (4)0.54877 (14)0.0625 (11)
C250.2738 (2)−0.1795 (4)0.49157 (14)0.0658 (11)
H25A0.2740−0.12190.46290.079*
H25B0.2574−0.12610.51590.079*
H25C0.2368−0.25460.47870.079*
N10.63226 (16)0.0999 (3)0.60680 (11)0.0507 (8)
O10.78494 (14)0.0796 (2)0.64396 (10)0.0644 (7)
H1A0.73740.05650.63570.097*
O20.46800 (18)−0.5512 (3)0.55272 (12)0.0875 (10)
O30.51209 (14)−0.3380 (2)0.57174 (10)0.0606 (7)
C260.67182 (18)0.1911 (3)0.36205 (12)0.0424 (8)
C270.7414 (2)0.2736 (3)0.38276 (13)0.0479 (9)
C280.81763 (19)0.2128 (3)0.40647 (13)0.0478 (9)
C290.8196 (2)0.0694 (4)0.40745 (13)0.0520 (9)
H290.86960.02730.42290.062*
C300.7525 (2)−0.0166 (3)0.38701 (13)0.0466 (9)
C310.6791 (2)0.0473 (3)0.36445 (13)0.0482 (9)
H310.6331−0.00660.35040.058*
C320.89406 (19)0.3001 (4)0.43076 (15)0.0557 (10)
C330.9692 (2)0.2112 (4)0.45430 (18)0.0809 (13)
H33A0.97650.15310.42770.097*
H33B0.96280.15500.48160.097*
H33C1.01550.26970.46840.097*
C340.8854 (2)0.3901 (4)0.47456 (16)0.0741 (12)
H34A0.87780.33230.50110.089*
H34B0.83960.44990.46080.089*
H34C0.93330.44460.48930.089*
C350.9091 (2)0.3908 (4)0.38876 (16)0.0744 (12)
H35A0.86360.45060.37370.089*
H35B0.91630.33320.36200.089*
H35C0.95670.44550.40430.089*
C360.7602 (2)−0.1747 (4)0.39020 (15)0.0548 (10)
C370.8450 (3)−0.2233 (4)0.4182 (2)0.1033 (16)
H37A0.8633−0.18830.45320.124*
H37B0.8798−0.19040.40020.124*
H37C0.8460−0.32240.41900.124*
C380.7046 (3)−0.2350 (4)0.41652 (17)0.0836 (13)
H38A0.6499−0.20970.39720.100*
H38B0.7193−0.19980.45150.100*
H38C0.7095−0.33380.41760.100*
C390.7345 (3)−0.2358 (4)0.33471 (16)0.0851 (13)
H39A0.7690−0.20060.31690.102*
H39B0.6796−0.21030.31590.102*
H39C0.7388−0.33460.33680.102*
C400.59273 (19)0.2538 (4)0.33832 (13)0.0492 (9)
H400.54760.19780.32460.059*
C410.5103 (2)0.4573 (3)0.31500 (13)0.0483 (9)
C420.4340 (2)0.3969 (4)0.29606 (14)0.0549 (10)
H420.42850.30140.29580.066*
C430.3672 (2)0.4796 (4)0.27784 (13)0.0550 (10)
H430.31660.43800.26530.066*
C440.3715 (2)0.6238 (4)0.27722 (13)0.0467 (9)
C450.4483 (2)0.6801 (3)0.29646 (14)0.0495 (9)
C460.5164 (2)0.5999 (4)0.31460 (14)0.0542 (10)
H460.56700.64150.32670.065*
C470.3032 (2)0.7170 (4)0.25793 (13)0.0527 (9)
C480.3177 (3)0.8536 (4)0.26011 (15)0.0642 (11)
H480.27380.91280.24750.077*
C490.3967 (3)0.9138 (4)0.28057 (15)0.0608 (10)
C500.2196 (2)0.6579 (4)0.23672 (15)0.0687 (11)
H50A0.20940.60250.26310.082*
H50B0.21500.60160.20680.082*
H50C0.18100.73160.22670.082*
N20.58451 (16)0.3866 (3)0.33607 (11)0.0516 (8)
O40.73564 (13)0.4132 (2)0.38099 (9)0.0616 (7)
H4A0.68840.43570.36640.092*
O50.41309 (18)1.0345 (3)0.28431 (11)0.0795 (9)
O60.46070 (14)0.8222 (2)0.29799 (10)0.0615 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.046 (2)0.045 (2)0.048 (2)−0.0058 (17)0.0157 (16)−0.0017 (17)
C20.051 (2)0.037 (2)0.053 (2)−0.0006 (16)0.0169 (18)0.0018 (16)
C30.050 (2)0.041 (2)0.054 (2)−0.0001 (16)0.0187 (17)0.0008 (17)
C40.052 (2)0.046 (2)0.068 (3)−0.0034 (18)0.0206 (19)0.0006 (19)
C50.048 (2)0.040 (2)0.061 (2)−0.0013 (17)0.0180 (18)0.0041 (18)
C60.048 (2)0.047 (2)0.055 (2)0.0013 (17)0.0165 (17)0.0039 (18)
C70.049 (2)0.044 (2)0.070 (3)0.0044 (17)0.0160 (18)0.004 (2)
C80.073 (3)0.071 (2)0.105 (3)0.009 (2)0.031 (2)−0.011 (2)
C90.069 (2)0.082 (3)0.094 (3)0.007 (2)0.014 (2)0.022 (2)
C100.056 (2)0.068 (2)0.103 (3)0.002 (2)0.018 (2)0.000 (2)
C110.057 (2)0.041 (2)0.093 (3)0.0015 (18)0.027 (2)0.015 (2)
C120.109 (3)0.052 (2)0.091 (3)0.004 (2)0.011 (2)0.000 (2)
C130.090 (3)0.068 (3)0.189 (4)−0.011 (2)0.039 (3)0.030 (3)
C140.106 (3)0.059 (2)0.085 (3)0.008 (2)0.032 (2)0.018 (2)
C150.044 (2)0.051 (2)0.050 (2)−0.0001 (17)0.0161 (17)−0.0006 (18)
C160.041 (2)0.050 (2)0.051 (2)−0.0034 (17)0.0148 (16)−0.0006 (18)
C170.057 (2)0.044 (2)0.067 (3)0.0048 (18)0.0220 (19)0.0015 (19)
C180.041 (2)0.057 (2)0.061 (2)0.0024 (18)0.0146 (18)−0.0032 (19)
C190.045 (2)0.051 (2)0.047 (2)−0.0041 (17)0.0162 (17)−0.0020 (17)
C200.053 (2)0.042 (2)0.051 (2)−0.0045 (18)0.0192 (18)0.0023 (18)
C210.045 (2)0.054 (2)0.056 (2)0.0016 (18)0.0116 (17)0.0024 (19)
C220.049 (2)0.060 (2)0.042 (2)−0.0094 (18)0.0159 (17)−0.0056 (18)
C230.066 (3)0.060 (3)0.060 (3)−0.023 (2)0.018 (2)−0.008 (2)
C240.071 (3)0.053 (3)0.058 (3)−0.012 (2)0.015 (2)−0.003 (2)
C250.058 (2)0.078 (2)0.062 (2)−0.010 (2)0.0209 (18)−0.012 (2)
N10.0504 (18)0.0427 (18)0.058 (2)−0.0060 (14)0.0171 (14)−0.0006 (15)
O10.0574 (16)0.0368 (14)0.091 (2)−0.0038 (12)0.0151 (14)0.0042 (13)
O20.104 (2)0.0444 (17)0.106 (3)−0.0065 (16)0.0258 (19)0.0004 (16)
O30.0566 (16)0.0443 (14)0.0735 (18)−0.0036 (12)0.0125 (13)0.0014 (13)
C260.0369 (19)0.047 (2)0.041 (2)−0.0025 (16)0.0111 (15)0.0019 (16)
C270.053 (2)0.039 (2)0.050 (2)0.0032 (17)0.0146 (18)0.0027 (17)
C280.0397 (19)0.046 (2)0.055 (2)−0.0021 (16)0.0128 (16)0.0017 (17)
C290.044 (2)0.050 (2)0.056 (2)0.0050 (17)0.0088 (17)0.0042 (18)
C300.044 (2)0.0399 (19)0.051 (2)0.0024 (16)0.0105 (16)0.0009 (17)
C310.051 (2)0.042 (2)0.050 (2)−0.0052 (17)0.0156 (17)−0.0020 (17)
C320.039 (2)0.053 (2)0.069 (3)−0.0025 (17)0.0116 (18)0.002 (2)
C330.055 (2)0.069 (2)0.104 (3)−0.007 (2)0.007 (2)0.005 (2)
C340.063 (2)0.071 (2)0.081 (3)−0.021 (2)0.016 (2)−0.010 (2)
C350.064 (2)0.073 (2)0.089 (3)−0.012 (2)0.029 (2)0.004 (2)
C360.053 (2)0.046 (2)0.062 (3)0.0054 (18)0.0156 (19)0.0056 (19)
C370.087 (3)0.058 (2)0.140 (4)0.006 (2)0.006 (3)0.009 (2)
C380.103 (3)0.057 (2)0.096 (3)−0.003 (2)0.042 (2)0.004 (2)
C390.109 (3)0.065 (2)0.085 (3)0.003 (2)0.037 (2)−0.001 (2)
C400.044 (2)0.054 (2)0.047 (2)−0.0025 (17)0.0110 (16)−0.0019 (18)
C410.046 (2)0.047 (2)0.048 (2)0.0016 (17)0.0110 (17)0.0017 (17)
C420.053 (2)0.046 (2)0.061 (2)0.0044 (18)0.0130 (18)0.0003 (18)
C430.049 (2)0.055 (2)0.058 (3)0.0004 (19)0.0145 (19)0.0001 (19)
C440.046 (2)0.051 (2)0.042 (2)0.0050 (17)0.0138 (17)0.0016 (17)
C450.055 (2)0.040 (2)0.055 (2)0.0025 (18)0.0209 (18)0.0015 (17)
C460.041 (2)0.057 (2)0.062 (3)−0.0017 (18)0.0142 (18)0.002 (2)
C470.049 (2)0.067 (3)0.042 (2)0.0101 (19)0.0150 (17)0.0022 (19)
C480.074 (3)0.062 (3)0.060 (3)0.023 (2)0.027 (2)0.014 (2)
C490.074 (3)0.054 (2)0.057 (3)0.009 (2)0.025 (2)0.006 (2)
C500.057 (2)0.078 (2)0.067 (2)0.017 (2)0.0163 (19)0.002 (2)
N20.0433 (17)0.0456 (18)0.061 (2)0.0070 (14)0.0115 (14)0.0054 (15)
O40.0467 (15)0.0432 (15)0.0863 (19)0.0006 (12)0.0115 (13)0.0039 (13)
O50.104 (2)0.0458 (17)0.090 (2)0.0101 (15)0.0349 (18)0.0071 (15)
O60.0628 (17)0.0441 (15)0.0746 (19)0.0052 (13)0.0194 (14)0.0014 (13)

Geometric parameters (Å, °)

C1—C61.398 (5)C26—C311.398 (5)
C1—C21.417 (4)C26—C271.410 (4)
C1—C151.452 (4)C26—C401.454 (4)
C2—O11.358 (4)C27—O41.356 (4)
C2—C31.399 (4)C27—C281.406 (4)
C3—C41.395 (5)C28—C291.390 (5)
C3—C71.526 (4)C28—C321.536 (5)
C4—C51.397 (4)C29—C301.398 (4)
C4—H40.9300C29—H290.9300
C5—C61.375 (4)C30—C311.375 (4)
C5—C111.536 (5)C30—C361.537 (5)
C6—H60.9300C31—H310.9300
C7—C91.522 (5)C32—C331.525 (5)
C7—C101.531 (5)C32—C341.526 (5)
C7—C81.533 (5)C32—C351.535 (5)
C8—H8A0.9600C33—H33A0.9600
C8—H8B0.9600C33—H33B0.9600
C8—H8C0.9600C33—H33C0.9600
C9—H9A0.9600C34—H34A0.9600
C9—H9B0.9600C34—H34B0.9600
C9—H9C0.9600C34—H34C0.9600
C10—H10A0.9600C35—H35A0.9600
C10—H10B0.9600C35—H35B0.9600
C10—H10C0.9600C35—H35C0.9600
C11—C141.513 (5)C36—C371.503 (5)
C11—C131.515 (5)C36—C381.513 (5)
C11—C121.529 (6)C36—C391.541 (5)
C12—H12A0.9600C37—H37A0.9600
C12—H12B0.9600C37—H37B0.9600
C12—H12C0.9600C37—H37C0.9600
C13—H13A0.9600C38—H38A0.9600
C13—H13B0.9600C38—H38B0.9600
C13—H13C0.9600C38—H38C0.9600
C14—H14A0.9600C39—H39A0.9600
C14—H14B0.9600C39—H39B0.9600
C14—H14C0.9600C39—H39C0.9600
C15—N11.286 (4)C40—N21.294 (4)
C15—H150.9300C40—H400.9300
C16—C211.384 (5)C41—C461.386 (5)
C16—C171.393 (4)C41—C421.394 (5)
C16—N11.416 (4)C41—N21.413 (4)
C17—C181.382 (5)C42—C431.369 (4)
C17—H170.9300C42—H420.9300
C18—C191.396 (5)C43—C441.399 (5)
C18—H180.9300C43—H430.9300
C19—C201.376 (5)C44—C451.386 (5)
C19—C221.442 (5)C44—C471.453 (4)
C20—C211.378 (4)C45—C461.372 (4)
C20—O31.390 (4)C45—O61.392 (4)
C21—H210.9300C46—H460.9300
C22—C231.348 (5)C47—C481.344 (5)
C22—C251.489 (5)C47—C501.500 (5)
C23—C241.432 (5)C48—C491.434 (5)
C23—H230.9300C48—H480.9300
C24—O21.208 (4)C49—O51.201 (4)
C24—O31.386 (4)C49—O61.385 (4)
C25—H25A0.9600C50—H50A0.9600
C25—H25B0.9600C50—H50B0.9600
C25—H25C0.9600C50—H50C0.9600
O1—H1A0.8200O4—H4A0.8200
C6—C1—C2119.0 (3)C31—C26—C27119.5 (3)
C6—C1—C15119.0 (3)C31—C26—C40119.7 (3)
C2—C1—C15121.7 (3)C27—C26—C40120.8 (3)
O1—C2—C3119.6 (3)O4—C27—C28118.8 (3)
O1—C2—C1119.1 (3)O4—C27—C26120.5 (3)
C3—C2—C1121.3 (3)C28—C27—C26120.7 (3)
C4—C3—C2116.2 (3)C29—C28—C27116.2 (3)
C4—C3—C7121.8 (3)C29—C28—C32121.9 (3)
C2—C3—C7121.9 (3)C27—C28—C32121.9 (3)
C3—C4—C5124.5 (3)C28—C29—C30125.1 (3)
C3—C4—H4117.7C28—C29—H29117.4
C5—C4—H4117.7C30—C29—H29117.4
C6—C5—C4117.4 (3)C31—C30—C29116.7 (3)
C6—C5—C11121.2 (3)C31—C30—C36121.7 (3)
C4—C5—C11121.5 (3)C29—C30—C36121.6 (3)
C5—C6—C1121.6 (3)C30—C31—C26121.8 (3)
C5—C6—H6119.2C30—C31—H31119.1
C1—C6—H6119.2C26—C31—H31119.1
C9—C7—C3111.3 (3)C33—C32—C34107.2 (3)
C9—C7—C10107.4 (3)C33—C32—C35107.0 (3)
C3—C7—C10112.3 (3)C34—C32—C35110.1 (3)
C9—C7—C8109.6 (3)C33—C32—C28112.2 (3)
C3—C7—C8109.1 (3)C34—C32—C28110.2 (3)
C10—C7—C8107.1 (3)C35—C32—C28110.0 (3)
C7—C8—H8A109.5C32—C33—H33A109.5
C7—C8—H8B109.5C32—C33—H33B109.5
H8A—C8—H8B109.5H33A—C33—H33B109.5
C7—C8—H8C109.5C32—C33—H33C109.5
H8A—C8—H8C109.5H33A—C33—H33C109.5
H8B—C8—H8C109.5H33B—C33—H33C109.5
C7—C9—H9A109.5C32—C34—H34A109.5
C7—C9—H9B109.5C32—C34—H34B109.5
H9A—C9—H9B109.5H34A—C34—H34B109.5
C7—C9—H9C109.5C32—C34—H34C109.5
H9A—C9—H9C109.5H34A—C34—H34C109.5
H9B—C9—H9C109.5H34B—C34—H34C109.5
C7—C10—H10A109.5C32—C35—H35A109.5
C7—C10—H10B109.5C32—C35—H35B109.5
H10A—C10—H10B109.5H35A—C35—H35B109.5
C7—C10—H10C109.5C32—C35—H35C109.5
H10A—C10—H10C109.5H35A—C35—H35C109.5
H10B—C10—H10C109.5H35B—C35—H35C109.5
C14—C11—C13110.5 (4)C37—C36—C38109.2 (3)
C14—C11—C12108.6 (3)C37—C36—C30113.2 (3)
C13—C11—C12106.5 (4)C38—C36—C30110.6 (3)
C14—C11—C5110.1 (3)C37—C36—C39106.7 (3)
C13—C11—C5112.8 (3)C38—C36—C39107.1 (3)
C12—C11—C5108.2 (3)C30—C36—C39109.7 (3)
C11—C12—H12A109.5C36—C37—H37A109.5
C11—C12—H12B109.5C36—C37—H37B109.5
H12A—C12—H12B109.5H37A—C37—H37B109.5
C11—C12—H12C109.5C36—C37—H37C109.5
H12A—C12—H12C109.5H37A—C37—H37C109.5
H12B—C12—H12C109.5H37B—C37—H37C109.5
C11—C13—H13A109.5C36—C38—H38A109.5
C11—C13—H13B109.5C36—C38—H38B109.5
H13A—C13—H13B109.5H38A—C38—H38B109.5
C11—C13—H13C109.5C36—C38—H38C109.5
H13A—C13—H13C109.5H38A—C38—H38C109.5
H13B—C13—H13C109.5H38B—C38—H38C109.5
C11—C14—H14A109.5C36—C39—H39A109.5
C11—C14—H14B109.5C36—C39—H39B109.5
H14A—C14—H14B109.5H39A—C39—H39B109.5
C11—C14—H14C109.5C36—C39—H39C109.5
H14A—C14—H14C109.5H39A—C39—H39C109.5
H14B—C14—H14C109.5H39B—C39—H39C109.5
N1—C15—C1120.4 (3)N2—C40—C26120.7 (3)
N1—C15—H15119.8N2—C40—H40119.6
C1—C15—H15119.8C26—C40—H40119.6
C21—C16—C17119.3 (3)C46—C41—C42118.9 (3)
C21—C16—N1115.0 (3)C46—C41—N2115.0 (3)
C17—C16—N1125.6 (3)C42—C41—N2126.1 (3)
C18—C17—C16119.1 (3)C43—C42—C41119.4 (4)
C18—C17—H17120.4C43—C42—H42120.3
C16—C17—H17120.4C41—C42—H42120.3
C17—C18—C19122.4 (3)C42—C43—C44123.0 (4)
C17—C18—H18118.8C42—C43—H43118.5
C19—C18—H18118.8C44—C43—H43118.5
C20—C19—C18116.6 (3)C45—C44—C43116.0 (3)
C20—C19—C22118.9 (3)C45—C44—C47118.3 (3)
C18—C19—C22124.5 (3)C43—C44—C47125.7 (3)
C19—C20—C21122.6 (3)C46—C45—C44122.3 (3)
C19—C20—O3122.1 (3)C46—C45—O6116.1 (3)
C21—C20—O3115.2 (3)C44—C45—O6121.6 (3)
C20—C21—C16119.9 (3)C45—C46—C41120.4 (3)
C20—C21—H21120.1C45—C46—H46119.8
C16—C21—H21120.1C41—C46—H46119.8
C23—C22—C19117.6 (3)C48—C47—C44118.3 (4)
C23—C22—C25122.3 (3)C48—C47—C50122.7 (3)
C19—C22—C25120.1 (3)C44—C47—C50119.0 (3)
C22—C23—C24124.4 (4)C47—C48—C49124.2 (4)
C22—C23—H23117.8C47—C48—H48117.9
C24—C23—H23117.8C49—C48—H48117.9
O2—C24—O3116.2 (4)O5—C49—O6116.7 (4)
O2—C24—C23127.4 (4)O5—C49—C48127.1 (4)
O3—C24—C23116.4 (4)O6—C49—C48116.2 (3)
C22—C25—H25A109.5C47—C50—H50A109.5
C22—C25—H25B109.5C47—C50—H50B109.5
H25A—C25—H25B109.5H50A—C50—H50B109.5
C22—C25—H25C109.5C47—C50—H50C109.5
H25A—C25—H25C109.5H50A—C50—H50C109.5
H25B—C25—H25C109.5H50B—C50—H50C109.5
C15—N1—C16124.0 (3)C40—N2—C41125.0 (3)
C2—O1—H1A109.5C27—O4—H4A109.5
C24—O3—C20120.5 (3)C49—O6—C45121.4 (3)
C6—C1—C2—O1−178.6 (3)C31—C26—C27—O4−179.8 (3)
C15—C1—C2—O1−4.6 (5)C40—C26—C27—O40.2 (5)
C6—C1—C2—C3−0.2 (5)C31—C26—C27—C28−1.0 (5)
C15—C1—C2—C3173.8 (3)C40—C26—C27—C28178.9 (3)
O1—C2—C3—C4178.4 (3)O4—C27—C28—C29179.5 (3)
C1—C2—C3—C40.0 (5)C26—C27—C28—C290.7 (5)
O1—C2—C3—C70.4 (5)O4—C27—C28—C320.6 (5)
C1—C2—C3—C7−177.9 (3)C26—C27—C28—C32−178.2 (3)
C2—C3—C4—C50.3 (5)C27—C28—C29—C30−0.1 (5)
C7—C3—C4—C5178.3 (3)C32—C28—C29—C30178.8 (3)
C3—C4—C5—C6−0.5 (6)C28—C29—C30—C31−0.2 (5)
C3—C4—C5—C11178.3 (4)C28—C29—C30—C36−179.5 (4)
C4—C5—C6—C10.3 (5)C29—C30—C31—C26−0.1 (5)
C11—C5—C6—C1−178.5 (4)C36—C30—C31—C26179.2 (4)
C2—C1—C6—C50.1 (5)C27—C26—C31—C300.7 (5)
C15—C1—C6—C5−174.1 (3)C40—C26—C31—C30−179.3 (3)
C4—C3—C7—C9125.7 (4)C29—C28—C32—C330.8 (5)
C2—C3—C7—C9−56.5 (5)C27—C28—C32—C33179.7 (3)
C4—C3—C7—C105.3 (5)C29—C28—C32—C34−118.6 (4)
C2—C3—C7—C10−176.9 (3)C27—C28—C32—C3460.3 (5)
C4—C3—C7—C8−113.3 (4)C29—C28—C32—C35119.8 (4)
C2—C3—C7—C864.6 (4)C27—C28—C32—C35−61.3 (4)
C6—C5—C11—C14−49.3 (5)C31—C30—C36—C37−177.7 (4)
C4—C5—C11—C14132.0 (4)C29—C30—C36—C371.5 (5)
C6—C5—C11—C13−173.3 (4)C31—C30—C36—C38−54.7 (5)
C4—C5—C11—C138.0 (6)C29—C30—C36—C38124.6 (4)
C6—C5—C11—C1269.2 (5)C31—C30—C36—C3963.2 (5)
C4—C5—C11—C12−109.5 (4)C29—C30—C36—C39−117.5 (4)
C6—C1—C15—N1176.7 (3)C31—C26—C40—N2179.4 (4)
C2—C1—C15—N12.7 (5)C27—C26—C40—N2−0.5 (5)
C21—C16—C17—C18−0.6 (5)C46—C41—C42—C43−0.3 (5)
N1—C16—C17—C18175.7 (3)N2—C41—C42—C43178.5 (3)
C16—C17—C18—C19−0.6 (6)C41—C42—C43—C440.0 (6)
C17—C18—C19—C200.8 (6)C42—C43—C44—C45−0.1 (5)
C17—C18—C19—C22−179.6 (3)C42—C43—C44—C47179.3 (3)
C18—C19—C20—C210.3 (5)C43—C44—C45—C460.7 (5)
C22—C19—C20—C21−179.4 (3)C47—C44—C45—C46−178.8 (3)
C18—C19—C20—O3−177.9 (3)C43—C44—C45—O6−180.0 (3)
C22—C19—C20—O32.5 (5)C47—C44—C45—O60.6 (5)
C19—C20—C21—C16−1.5 (6)C44—C45—C46—C41−1.0 (6)
O3—C20—C21—C16176.8 (3)O6—C45—C46—C41179.6 (3)
C17—C16—C21—C201.6 (5)C42—C41—C46—C450.8 (5)
N1—C16—C21—C20−175.0 (3)N2—C41—C46—C45−178.1 (3)
C20—C19—C22—C23−2.7 (5)C45—C44—C47—C48−0.6 (5)
C18—C19—C22—C23177.6 (4)C43—C44—C47—C48−180.0 (4)
C20—C19—C22—C25176.6 (3)C45—C44—C47—C50179.7 (3)
C18—C19—C22—C25−3.1 (5)C43—C44—C47—C500.3 (5)
C19—C22—C23—C240.2 (6)C44—C47—C48—C49−0.3 (6)
C25—C22—C23—C24−179.1 (3)C50—C47—C48—C49179.4 (3)
C22—C23—C24—O2−177.2 (4)C47—C48—C49—O5−178.6 (4)
C22—C23—C24—O32.6 (6)C47—C48—C49—O61.2 (6)
C1—C15—N1—C16−173.4 (3)C26—C40—N2—C41−178.4 (3)
C21—C16—N1—C15178.4 (4)C46—C41—N2—C40−177.2 (4)
C17—C16—N1—C152.0 (6)C42—C41—N2—C403.9 (6)
O2—C24—O3—C20176.9 (4)O5—C49—O6—C45178.6 (4)
C23—C24—O3—C20−2.9 (5)C48—C49—O6—C45−1.2 (5)
C19—C20—O3—C240.5 (5)C46—C45—O6—C49179.8 (3)
C21—C20—O3—C24−177.8 (3)C44—C45—O6—C490.4 (5)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C26–C31 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.802.538 (4)149
O4—H4A···N20.821.802.537 (4)149
C25—H25B···Cg10.962.733.536 (4)143
C50—H50A···Cg2i0.962.803.571 (4)138
C50—H50B···Cg1ii0.962.913.569 (4)136

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5038).

References

  • Aazam, E. S., El Husseiny, A. F., Al-Amri, H. M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o179.
  • Aazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem.6, 319–323.
  • Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Creaven, B. S., Devereux, M., Karcz, D., Kellett, A., McCann, M., Noble, A. & Walsh, M. (2009). J. Inorg. Biochem.103, 1196–1203. [PubMed]
  • El Husseiny, A. F., Aazam, E. S. & Al Shehary, J. (2008). ICAIJ, 3, 64–68.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Honda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 899–901.
  • Kachkovski, O. D., Tolmachev, O. I., Kobryn, L. O., Bila, E. E. & Ganushchak, M. I. (2004). Dyes Pigm.63, 203–211.
  • Kulkarni, A., Patil, S. A. & Badami, P. S. (2009). Eur. J. Med. Chem., pp. 1–9.
  • Ronad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci.341, 696–700. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie, (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Youssef, N. S., El-Zahany, E., El-Seidy, A. M. A., Caselli, A. & Cenini, S. (2009). J. Mol. Catal. A, pp. 159–168.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography