PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1309.
Published online 2010 September 30. doi:  10.1107/S1600536810037542
PMCID: PMC2983142

catena-Poly[hexaaqua-1κO,2κO,3κ4 O-(μ4-3,5-dicarboxylatopyrazol-1-ido-3′:1:2:3κ6 O 5:N 1,O 5′:N 2,O 3:O 3′)(μ2-3,5-dicarboxylatopyrazol-1-ido-1:2κ4 N 2,O 3:N 1,O 5)-1,2-dicopper(II)-3-manganese(II)]

Abstract

In the title compound, [Cu2Mn(C5HN2O4)2(H2O)6]n, the CuII ion is coordinated by two N atoms, two O atoms and one water O atom in a distorted square-pyramidal geometry. The MnII ion is coordinated by two O atoms and four water O atoms in a distorted octa­hedral geometry. Two pyrazolyl-3,5-dicarboxyl­ate anions chelate to two copper ions, forming a dinuclear unit, which further connects the MnII ions into chains extending along [100]. Both independent coordinated water mol­ecules on the MnII ion are disordered in a 50:50 fashion.

Related literature

Pyrazole-3,5-dicarb­oxy­lic acid is a multifunctional ligand which exhibits versatile coordination modes, see: Pan et al. (2001 [triangle]); Zhou et al. (2009 [triangle]). For related structures, see: King et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1309-scheme1.jpg

Experimental

Crystal data

  • [Cu2Mn(C5HN2O4)2(H2O)6]
  • M r = 596.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1309-efi1.jpg
  • a = 21.778 (3) Å
  • b = 13.0387 (19) Å
  • c = 12.3800 (18) Å
  • V = 3515.3 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.19 mm−1
  • T = 291 K
  • 0.15 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.646, T max = 0.700
  • 8862 measured reflections
  • 1779 independent reflections
  • 1562 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.126
  • S = 1.26
  • 1779 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037542/fj2333sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037542/fj2333Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported financially by Nanjing University of Posts and Telecommunications (grant No. NY209032).

supplementary crystallographic information

Comment

Pyrazole-3,5-dicarboxylic acid is a multifunctional ligand and exhibits the versatile coordination modes (Pan et al. 2001; Zhou et al. 2009). As a part of our ongoing investigations in this ligand, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Cu atom is coordinated by two carboxylate oxygen atoms and two pyrazolyl nitrogen atoms from two pyrazolyl-3,5-dicarboxylate anions and one water molecule in a distorted square-pyramidal geometry. The Mn atom is coordinated by two O atoms from two pyrazolyl-3,5-dicarboxylate anions and four water molecules in a distorted octahedral geometry (Figure 1). Each two pyrazolyl-3,5-dicarboxylate anoins chelate to two copper ions to form the dinuclear Cu(II) unit with the Cu···Cu distance of 3.883 (1) Å. These dinuclear Cu(II) units connect the manganese atoms by two remaining carboxylate oxygen atoms from a pyrazolyl-3,5-dicarboxylate anion into chains that elongate in the direction of the crystallographic a axis.

Experimental

A mixture of pyrazole-3,5-dicarboxylic acid (0.2 mmol, 34.8 mg), CuI (0.1 mmol, 19 mg), MnCl2.4H2O (0.1 mmol, 19.8 mg), KI (0.1 mmol, 16.6 mg), CH3CN (4 ml) and H2O (2 ml) was sealed in a 15 ml Teflon-lined bomb and heated at 140°C for 3 days. The reaction mixture was slowly cooled to room temperature to obtain the blue block crystals of (I) suitable for X-ray diffraction analysis.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in difference map, their bond lengths were set to 0.85 Å and afterwards they were refined using a riding model with Uiso(H) = 1.5Ueq(O).

The atom O6 is disordered in two positions, with site occupancy factors of 0.50 (3) and 0.50 (3). The atom O7 is disordered in two positions, with site occupancy factors of 0.50 (2) and 0.50 (2). The total occupancy sums of both positions for O6 and O7 are 1.

Figures

Fig. 1.
Crystal structure of (I) with labeling and displacement ellipsoids drawn at the 50% probability level.

Crystal data

[Cu2Mn(C5HN2O4)2(H2O)6]F(000) = 2376
Mr = 596.27Dx = 2.253 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 2617 reflections
a = 21.778 (3) Åθ = 2.5–28.3°
b = 13.0387 (19) ŵ = 3.19 mm1
c = 12.3800 (18) ÅT = 291 K
V = 3515.3 (9) Å3Block, blue
Z = 80.15 × 0.14 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer1779 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
graphiteRint = 0.058
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −26→26
Tmin = 0.646, Tmax = 0.700k = −16→9
8862 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.26w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P] where P = (Fo2 + 2Fc2)/3
1779 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.41085 (3)0.14426 (5)1.06815 (5)0.0203 (2)
Mn10.25000.12380 (9)0.75000.0246 (3)
C10.50000.1141 (6)1.3514 (6)0.0224 (16)
H10.50000.10541.42590.027*
C20.4501 (2)0.1221 (4)1.2832 (4)0.0191 (11)
C30.3821 (2)0.1194 (4)1.2885 (4)0.0205 (11)
C40.50000.1212 (5)0.7831 (6)0.0172 (15)
H40.50000.11780.70810.021*
C50.4497 (2)0.1244 (4)0.8532 (4)0.0171 (10)
C60.3809 (2)0.1249 (4)0.8491 (4)0.0183 (10)
N10.47006 (19)0.1342 (3)1.1814 (3)0.0202 (9)
N20.46982 (19)0.1290 (4)0.9544 (3)0.0210 (10)
O10.35447 (17)0.1124 (3)1.3755 (3)0.0298 (10)
O20.35551 (16)0.1236 (3)1.1967 (3)0.0230 (8)
O30.35519 (16)0.1275 (3)0.9417 (3)0.0256 (9)
O40.35220 (16)0.1236 (3)0.7623 (3)0.0229 (8)
O5W0.4030 (2)0.3139 (3)1.0671 (3)0.0364 (10)
H20.38570.33421.12480.055*
H30.38230.33981.01570.055*
O6W0.2501 (4)−0.0125 (11)0.6497 (12)0.033 (3)0.50 (3)
H50.2677−0.06530.67550.049*0.50 (3)
H60.2121−0.02590.64330.049*0.50 (3)
O6W'0.2644 (7)0.0351 (14)0.6051 (12)0.042 (5)0.50 (3)
H70.24640.05630.54840.063*0.50 (3)
H80.30280.04200.59550.063*0.50 (3)
O7W0.2436 (4)0.2640 (9)0.8425 (12)0.032 (3)0.50 (2)
H90.21150.29760.82580.048*0.50 (2)
H100.27520.30150.85130.048*0.50 (2)
O7W'0.2415 (5)0.2143 (15)0.8986 (13)0.050 (5)0.50 (2)
H110.21520.17550.92870.076*0.50 (2)
H120.27030.19780.94160.076*0.50 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0124 (3)0.0346 (4)0.0139 (3)0.0006 (3)0.0006 (2)0.0007 (3)
Mn10.0162 (5)0.0320 (7)0.0255 (6)0.0000.0000 (5)0.000
C10.024 (4)0.024 (4)0.020 (4)0.0000.0000.004 (3)
C20.019 (2)0.022 (3)0.016 (2)0.000 (2)0.000 (2)0.000 (2)
C30.013 (2)0.026 (3)0.023 (3)−0.006 (2)0.006 (2)−0.001 (2)
C40.016 (3)0.021 (4)0.015 (3)0.0000.0000.000 (3)
C50.016 (2)0.023 (3)0.013 (2)−0.004 (2)−0.0023 (19)−0.001 (2)
C60.018 (2)0.017 (2)0.020 (3)0.002 (2)−0.004 (2)0.002 (2)
N10.015 (2)0.030 (3)0.015 (2)0.0002 (19)−0.0011 (16)0.0025 (18)
N20.0120 (19)0.037 (3)0.013 (2)−0.0007 (19)0.0019 (16)−0.0018 (19)
O10.023 (2)0.046 (3)0.021 (2)−0.0112 (17)0.0037 (16)−0.0048 (18)
O20.0166 (18)0.037 (2)0.0153 (18)−0.0008 (16)0.0004 (15)0.0050 (17)
O30.0148 (17)0.044 (2)0.018 (2)−0.0016 (16)−0.0015 (14)0.0000 (18)
O40.0193 (17)0.037 (2)0.0120 (18)−0.0014 (16)−0.0030 (14)0.0009 (16)
O5W0.050 (3)0.040 (2)0.0187 (19)0.015 (2)0.0020 (19)0.0023 (18)
O6W0.021 (4)0.040 (6)0.037 (7)0.001 (4)0.003 (4)0.009 (6)
O6W'0.038 (6)0.058 (10)0.030 (7)0.022 (7)−0.016 (5)−0.007 (7)
O7W0.018 (4)0.032 (6)0.045 (8)0.004 (4)−0.004 (4)−0.001 (6)
O7W'0.038 (6)0.072 (11)0.041 (8)0.012 (6)−0.011 (5)−0.021 (8)

Geometric parameters (Å, °)

Cu1—N11.910 (4)C3—O21.276 (6)
Cu1—N21.916 (4)C4—C5ii1.398 (6)
Cu1—O31.992 (4)C4—C51.398 (6)
Cu1—O22.014 (4)C4—H40.9300
Cu1—O5W2.219 (4)C5—N21.329 (6)
Mn1—O6W'2.157 (10)C5—C61.500 (7)
Mn1—O6W'i2.157 (10)C6—O41.243 (6)
Mn1—O7W2.162 (9)C6—O31.276 (6)
Mn1—O7Wi2.162 (9)N1—N1ii1.304 (8)
Mn1—O6W2.168 (10)N2—N2ii1.315 (8)
Mn1—O6Wi2.168 (10)O5W—H20.8500
Mn1—O7W'2.193 (10)O5W—H30.8500
Mn1—O7W'i2.193 (10)O6W—H50.8500
Mn1—O42.231 (3)O6W—H60.8500
Mn1—O4i2.231 (3)O6W'—H70.8500
C1—C2ii1.379 (7)O6W'—H80.8499
C1—C21.379 (7)O7W—H90.8500
C1—H10.9300O7W—H100.8500
C2—N11.342 (6)O7W'—H110.8499
C2—C31.484 (7)O7W'—H120.8500
C3—O11.238 (6)
N1—Cu1—N294.59 (18)O7Wi—Mn1—O4i91.7 (2)
N1—Cu1—O3168.67 (18)O6W—Mn1—O4i87.8 (3)
N2—Cu1—O379.57 (16)O6Wi—Mn1—O4i92.1 (3)
N1—Cu1—O279.32 (16)O7W'—Mn1—O4i88.5 (3)
N2—Cu1—O2165.40 (18)O7W'i—Mn1—O4i91.6 (3)
O3—Cu1—O2104.02 (14)O4—Mn1—O4i179.8 (2)
N1—Cu1—O5W97.17 (17)C2ii—C1—C2103.9 (7)
N2—Cu1—O5W98.69 (18)C2ii—C1—H1128.1
O3—Cu1—O5W93.33 (16)C2—C1—H1128.1
O2—Cu1—O5W95.25 (15)N1—C2—C1109.2 (5)
O6W'—Mn1—O6W'i115.2 (12)N1—C2—C3111.5 (4)
O6W'—Mn1—O7W154.6 (8)C1—C2—C3139.3 (5)
O6W'i—Mn1—O7W90.2 (7)O1—C3—O2124.0 (5)
O6W'—Mn1—O7Wi90.2 (7)O1—C3—C2121.7 (5)
O6W'i—Mn1—O7Wi154.6 (8)O2—C3—C2114.4 (4)
O7W—Mn1—O7Wi64.5 (9)C5ii—C4—C5103.2 (6)
O6W'—Mn1—O6W23.7 (3)C5ii—C4—H4128.4
O6W'i—Mn1—O6W92.1 (11)C5—C4—H4128.4
O7W—Mn1—O6W175.4 (5)N2—C5—C4109.2 (4)
O7Wi—Mn1—O6W112.9 (6)N2—C5—C6111.2 (4)
O6W'—Mn1—O6Wi92.1 (11)C4—C5—C6139.6 (5)
O6W'i—Mn1—O6Wi23.7 (3)O4—C6—O3123.8 (5)
O7W—Mn1—O6Wi112.9 (6)O4—C6—C5122.1 (5)
O7Wi—Mn1—O6Wi175.4 (5)O3—C6—C5114.0 (4)
O6W—Mn1—O6Wi69.9 (10)N1ii—N1—C2108.9 (3)
O6W'—Mn1—O7W'176.5 (5)N1ii—N1—Cu1132.47 (12)
O6W'i—Mn1—O7W'65.1 (8)C2—N1—Cu1118.6 (3)
O7W—Mn1—O7W'25.2 (3)N2ii—N2—C5109.3 (3)
O7Wi—Mn1—O7W'89.7 (10)N2ii—N2—Cu1132.09 (12)
O6W—Mn1—O7W'157.2 (8)C5—N2—Cu1118.5 (3)
O6Wi—Mn1—O7W'87.7 (8)C3—O2—Cu1116.0 (3)
O6W'—Mn1—O7W'i65.1 (8)C6—O3—Cu1116.3 (3)
O6W'i—Mn1—O7W'i176.5 (5)C6—O4—Mn1124.1 (3)
O7W—Mn1—O7W'i89.7 (10)Cu1—O5W—H2109.9
O7Wi—Mn1—O7W'i25.2 (3)Cu1—O5W—H3116.2
O6W—Mn1—O7W'i87.7 (8)H2—O5W—H3105.7
O6Wi—Mn1—O7W'i157.2 (8)Mn1—O6W—H5116.8
O7W'—Mn1—O7W'i114.9 (13)Mn1—O6W—H6102.7
O6W'—Mn1—O484.9 (4)H5—O6W—H6107.7
O6W'i—Mn1—O495.0 (4)Mn1—O6W'—H684.8
O7W—Mn1—O491.7 (2)Mn1—O6W'—H7116.4
O7Wi—Mn1—O488.5 (2)H6—O6W'—H794.9
O6W—Mn1—O492.1 (3)Mn1—O7W—H9111.1
O6Wi—Mn1—O487.8 (3)Mn1—O7W—H10120.1
O7W'—Mn1—O491.6 (3)H9—O7W—H10113.6
O7W'i—Mn1—O488.5 (3)Mn1—O7W'—H1196.0
O6W'—Mn1—O4i95.0 (4)Mn1—O7W'—H12109.1
O6W'i—Mn1—O4i84.9 (4)H11—O7W'—H1294.1
O7W—Mn1—O4i88.5 (2)

Symmetry codes: (i) −x+1/2, y, −z+3/2; (ii) −x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2333).

References

  • Bruker (2000). SMART, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • King, P., Clèrac, R., Anson, C. E. & Powell, A. K. (2004). J. Chem. Soc. Dalton Trans. pp. 852–861. [PubMed]
  • Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem.40, 1271–1283. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, X. H., Peng, Y. H., Du, X. D., Wang, C. F., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des.9, 1028–1035.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography