PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1211.
Published online 2010 September 4. doi:  10.1107/S1600536810035300
PMCID: PMC2983140

Aqua­(trifluoro­methane­sulfonato)­bis­(1,3,7-trimethyl­purine-2,6-dione)silver(I)

Abstract

In the title compound, [Ag(CF3SO3)(C8H10N4O2)2(H2O)], the AgI atom is coordinated by two caffeine N atoms and, at longer distances, two O atoms of a coordinated water mol­ecule and the trifluoro­methane­sulfonate anion, resulting in an AgN2O2 seesaw geometry. The caffeine mol­ecules are roughly coplanar [dihedral angle = 5.81 (5)°]. In the crystal, mol­ecules self-assemble into a linear supra­molecular chain along the c axis via O—H(...)O hydrogen bonds involving the coordinated water moledcule and carbonyl O atoms. The packing is consolidated by weak C—H(...)O inter­actions.

Related literature

For structural diversity in the supra­molecular structures of silver salts, see: Kundu et al. (2010 [triangle]). For a related Ag structure, see: Arman et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1211-scheme1.jpg

Experimental

Crystal data

  • [Ag(CF3SO3)(C8H10N4O2)2(H2O)]
  • M r = 663.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1211-efi1.jpg
  • a = 8.9012 (10) Å
  • b = 10.0408 (8) Å
  • c = 15.457 (2) Å
  • α = 72.091 (7)°
  • β = 85.444 (9)°
  • γ = 63.672 (6)°
  • V = 1175.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 98 K
  • 0.42 × 0.27 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.568, T max = 1
  • 7271 measured reflections
  • 5323 independent reflections
  • 5140 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.092
  • S = 1.14
  • 5323 reflections
  • 355 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035300/hb5627sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035300/hb5627Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a continuation of recent structural studies on silver salts (Arman et al., 2010), of fascination owing to the structural diversity of their supramolecular structures (Kundu et al., 2010), the title compound, (I), was isolated and characterized.

The Ag atom in (I) is coordinated by a water molecule, two N atoms derived from two caffeine molecules and an O atom from the trifluoromethanesulfonate anion, Fig. 1. While the Ag—N bond distances are experimentally equivalent, they are shorter than the Ag—O(water) and even longer Ag—O(trifluoromethanesulfonate) distances, Table 1. Reflecting the disparity in the Ag—X bond distances, the N2O2 coordination geometry is highly distorted tetrahedral owing to the dominanace of the Ag—N bonds that are almost diagonally opposite [N3—Ag—N7 = 165.48 (8) °]. Each of the N3- and N7-caffeine rings is planar [r.m.s. deviation of the 14 non-hydrogen atoms = 0.013 and 0.029 Å, respectively] and are almost co-planar as seen in the dihedral angle formed between them of 5.81 (5) °.

In the crystal packing, centrosymmetrically related molecules associate via O—H···O hydrogen bonds formed between the coordinated water molecule and carbonyl-O, Fig. 2 and Table 2. This arrangement is stabilized by C—H···O interactions involving the O1w and O4 atoms as acceptors, Table 1, and π···π [ring centroid(N1,N2,C1,C3,C5,C8)···centroid(N1,N2,C1,C3,C5,C8)i = 3.5605 (16) ° for i: 2 - x, 1 - y, 1 - z] contacts. The primary interactions linking the resulting supramolecular chains aligned along the c axis are of the type C—H···O, Fig. 3 and Table 1.

Experimental

Caffeine (Analytical & Research Chemical Company, 0.015 g, 0.08 mmol) was dissolved in 5 ml of ethanol and silver trifluoromethanesulfonate (ACROS, 0.012 g, 0.04 mmol) also dissolved in 5 ml of ethanol was added to this. The resulting solution was gently heated and allowed to stand for slow evaporation, which afforded colourless blocks of (I) after 10 days; m. pt: 447–451 K. IR (cm-1): ν(O—H) 3454, ν(C═O) 1700, ν(C═N)1549, ν(C—F) 1156, ν(S—O) 1028.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O—H atoms were refined with O—H = 0.8400±0.0001, and with Uiso(H) set to 1.5Ueq(C)

Figures

Fig. 1.
Asymmetric unit in the structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Portion of the supramolecular chain aligned along the c axis in (I). The O—H···O hydrogen bonds are shown as orange dashed lines.
Fig. 3.
A view in projection down the a axis of the crystal packing in (I). The O—H···O hydrogen bonds and C—H···O contacts are shown as orange and blue dashed lines, respectively.

Crystal data

[Ag(CF3SO3)(C8H10N4O2)2(H2O)]Z = 2
Mr = 663.36F(000) = 668
Triclinic, P1Dx = 1.874 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.9012 (10) ÅCell parameters from 3724 reflections
b = 10.0408 (8) Åθ = 2.4–40.6°
c = 15.457 (2) ŵ = 1.03 mm1
α = 72.091 (7)°T = 98 K
β = 85.444 (9)°Block, colorless
γ = 63.672 (6)°0.42 × 0.27 × 0.10 mm
V = 1175.6 (2) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer5323 independent reflections
Radiation source: fine-focus sealed tube5140 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→11
Tmin = 0.568, Tmax = 1k = −13→11
7271 measured reflectionsl = −20→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0466P)2 + 1.1737P] where P = (Fo2 + 2Fc2)/3
5323 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = −0.86 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag0.92178 (2)0.48844 (2)0.188475 (12)0.01653 (8)
S11.24387 (8)0.07772 (7)0.21533 (4)0.01613 (13)
F11.1161 (2)−0.1212 (2)0.27088 (15)0.0355 (4)
F21.3860 (2)−0.2279 (2)0.27639 (14)0.0331 (4)
F31.2548 (3)−0.1155 (2)0.37600 (12)0.0356 (4)
O11.2942 (2)0.5290 (2)0.54121 (13)0.0215 (4)
O20.7737 (3)0.9110 (2)0.41597 (14)0.0233 (4)
O30.5572 (2)0.5224 (2)−0.19291 (13)0.0217 (4)
O40.3195 (2)0.9238 (2)−0.06788 (13)0.0200 (4)
O1w0.6921 (2)0.4768 (3)0.28220 (13)0.0225 (4)
H1w0.69220.46690.33820.034*
H2w0.60350.48120.26350.034*
O51.2439 (3)0.0652 (3)0.12484 (14)0.0292 (5)
O61.3918 (3)0.0794 (2)0.24474 (17)0.0295 (5)
O71.0872 (2)0.1910 (2)0.23664 (13)0.0196 (4)
N11.0320 (3)0.7175 (3)0.47948 (15)0.0161 (4)
N20.9007 (3)0.7135 (3)0.35260 (15)0.0160 (4)
N31.0696 (3)0.4918 (3)0.29602 (15)0.0170 (4)
N41.2894 (3)0.3795 (3)0.39758 (15)0.0160 (4)
N50.4349 (3)0.7199 (3)−0.12752 (15)0.0160 (4)
N60.5649 (3)0.7186 (3)0.00204 (14)0.0155 (4)
N70.8288 (3)0.4857 (3)0.06071 (15)0.0172 (4)
N80.8324 (3)0.3657 (3)−0.04021 (15)0.0166 (4)
C11.1779 (3)0.5806 (3)0.48418 (17)0.0156 (5)
C21.0253 (4)0.7989 (3)0.54543 (18)0.0208 (5)
H2A1.11360.83430.53460.031*
H2B1.04270.72750.60750.031*
H2C0.91530.88920.53810.031*
C30.8935 (3)0.7894 (3)0.41529 (18)0.0169 (5)
C40.7618 (3)0.7835 (3)0.28352 (19)0.0206 (5)
H4A0.79940.82070.22350.031*
H4B0.66820.87140.29780.031*
H4C0.72470.70520.28290.031*
C51.0406 (3)0.5789 (3)0.35362 (17)0.0143 (5)
C61.2221 (3)0.3717 (3)0.32635 (18)0.0168 (5)
H61.27610.28980.29970.020*
C71.4535 (3)0.2678 (3)0.44590 (19)0.0207 (5)
H7A1.51360.19060.41380.031*
H7B1.43720.21470.50810.031*
H7C1.51930.32340.44810.031*
C81.1738 (3)0.5129 (3)0.41647 (17)0.0147 (5)
C90.5606 (3)0.5776 (3)−0.13270 (17)0.0154 (5)
C100.2981 (3)0.8070 (3)−0.19966 (19)0.0207 (5)
H10A0.33850.8553−0.25560.031*
H10B0.20400.8883−0.18030.031*
H10C0.26050.7354−0.21110.031*
C110.4333 (3)0.7971 (3)−0.06454 (17)0.0154 (5)
C120.5725 (3)0.7927 (3)0.06883 (18)0.0202 (5)
H12A0.66280.82530.05540.030*
H12B0.59480.71820.13020.030*
H12C0.46510.88420.06550.030*
C130.6907 (3)0.5769 (3)0.00148 (17)0.0149 (5)
C140.9101 (3)0.3590 (3)0.03247 (17)0.0174 (5)
H141.01260.27340.06130.021*
C150.8874 (4)0.2440 (3)−0.08522 (19)0.0203 (5)
H15A1.00150.1650−0.06150.030*
H15B0.88650.2908−0.15110.030*
H15C0.81100.1950−0.07310.030*
C160.6894 (3)0.5071 (3)−0.06174 (17)0.0159 (5)
C171.2518 (3)−0.1069 (3)0.28803 (19)0.0200 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag0.01694 (11)0.01610 (12)0.01605 (11)−0.00609 (8)−0.00257 (7)−0.00519 (8)
S10.0131 (3)0.0120 (3)0.0189 (3)−0.0024 (2)0.0012 (2)−0.0038 (2)
F10.0277 (9)0.0307 (10)0.0546 (12)−0.0190 (8)0.0034 (9)−0.0122 (9)
F20.0281 (9)0.0136 (8)0.0456 (11)−0.0009 (7)0.0068 (8)−0.0071 (8)
F30.0466 (12)0.0338 (10)0.0181 (8)−0.0151 (9)0.0034 (8)−0.0013 (7)
O10.0206 (10)0.0245 (10)0.0188 (9)−0.0079 (8)−0.0022 (8)−0.0080 (8)
O20.0214 (10)0.0174 (10)0.0259 (10)−0.0028 (8)−0.0015 (8)−0.0078 (8)
O30.0203 (9)0.0267 (11)0.0209 (10)−0.0088 (8)−0.0008 (8)−0.0129 (8)
O40.0192 (9)0.0153 (9)0.0216 (9)−0.0038 (7)−0.0007 (7)−0.0060 (7)
O1w0.0198 (10)0.0333 (11)0.0189 (9)−0.0131 (9)0.0027 (8)−0.0122 (9)
O50.0284 (11)0.0232 (11)0.0189 (10)0.0030 (9)0.0027 (8)−0.0059 (8)
O60.0157 (9)0.0203 (10)0.0511 (14)−0.0071 (8)−0.0003 (9)−0.0095 (10)
O70.0154 (9)0.0161 (9)0.0239 (10)−0.0021 (7)0.0002 (7)−0.0089 (8)
N10.0174 (10)0.0149 (10)0.0145 (10)−0.0062 (9)−0.0006 (8)−0.0037 (8)
N20.0144 (10)0.0118 (10)0.0184 (10)−0.0037 (8)−0.0032 (8)−0.0024 (8)
N30.0152 (10)0.0150 (10)0.0205 (11)−0.0066 (9)−0.0003 (8)−0.0051 (9)
N40.0135 (10)0.0146 (10)0.0192 (10)−0.0049 (8)−0.0003 (8)−0.0061 (8)
N50.0164 (10)0.0142 (10)0.0153 (10)−0.0059 (8)−0.0016 (8)−0.0027 (8)
N60.0179 (10)0.0136 (10)0.0138 (10)−0.0053 (8)0.0002 (8)−0.0048 (8)
N70.0161 (10)0.0168 (11)0.0139 (10)−0.0037 (9)−0.0013 (8)−0.0032 (8)
N80.0169 (10)0.0129 (10)0.0165 (10)−0.0041 (8)0.0009 (8)−0.0037 (8)
C10.0161 (12)0.0153 (12)0.0160 (11)−0.0084 (10)0.0016 (9)−0.0035 (9)
C20.0258 (14)0.0180 (13)0.0182 (12)−0.0079 (11)0.0015 (10)−0.0078 (10)
C30.0169 (12)0.0150 (12)0.0184 (12)−0.0082 (10)0.0005 (10)−0.0025 (10)
C40.0163 (12)0.0160 (12)0.0250 (13)−0.0027 (10)−0.0067 (10)−0.0049 (10)
C50.0135 (11)0.0141 (11)0.0163 (11)−0.0071 (9)0.0006 (9)−0.0042 (9)
C60.0161 (12)0.0159 (12)0.0188 (12)−0.0065 (10)0.0004 (9)−0.0062 (10)
C70.0118 (11)0.0196 (13)0.0239 (13)−0.0009 (10)−0.0030 (10)−0.0059 (11)
C80.0143 (11)0.0123 (11)0.0169 (11)−0.0052 (9)0.0008 (9)−0.0046 (9)
C90.0141 (11)0.0153 (12)0.0164 (11)−0.0068 (9)0.0027 (9)−0.0044 (9)
C100.0181 (12)0.0188 (13)0.0227 (13)−0.0065 (10)−0.0062 (10)−0.0037 (11)
C110.0164 (11)0.0142 (12)0.0141 (11)−0.0068 (9)0.0007 (9)−0.0022 (9)
C120.0216 (13)0.0179 (13)0.0186 (12)−0.0053 (10)−0.0015 (10)−0.0070 (10)
C130.0155 (11)0.0148 (12)0.0138 (11)−0.0074 (10)0.0018 (9)−0.0025 (9)
C140.0157 (12)0.0163 (12)0.0162 (12)−0.0044 (10)−0.0013 (9)−0.0033 (10)
C150.0230 (13)0.0165 (12)0.0213 (13)−0.0067 (10)0.0034 (10)−0.0093 (10)
C160.0155 (12)0.0128 (11)0.0158 (11)−0.0036 (9)0.0014 (9)−0.0039 (9)
C170.0183 (12)0.0155 (12)0.0232 (13)−0.0054 (10)0.0031 (10)−0.0054 (10)

Geometric parameters (Å, °)

Ag—N72.213 (2)N6—C111.388 (3)
Ag—N32.218 (2)N6—C121.467 (3)
Ag—O1w2.4347 (19)N7—C141.344 (3)
Ag—O72.5591 (19)N7—C131.361 (3)
S1—O61.436 (2)N8—C141.335 (3)
S1—O51.442 (2)N8—C161.386 (3)
S1—O71.4482 (19)N8—C151.468 (3)
S1—C171.822 (3)C1—C81.423 (4)
F1—C171.334 (3)C2—H2A0.9800
F2—C171.322 (3)C2—H2B0.9800
F3—C171.338 (3)C2—H2C0.9800
O1—C11.227 (3)C4—H4A0.9800
O2—C31.216 (3)C4—H4B0.9800
O3—C91.229 (3)C4—H4C0.9800
O4—C111.213 (3)C5—C81.371 (4)
O1w—H1w0.8401C6—H60.9500
O1w—H2w0.8400C7—H7A0.9800
N1—C11.397 (3)C7—H7B0.9800
N1—C31.411 (3)C7—H7C0.9800
N1—C21.473 (3)C9—C161.422 (4)
N2—C51.369 (3)C10—H10A0.9800
N2—C31.388 (3)C10—H10B0.9800
N2—C41.463 (3)C10—H10C0.9800
N3—C61.349 (3)C12—H12A0.9800
N3—C51.365 (3)C12—H12B0.9800
N4—C61.333 (3)C12—H12C0.9800
N4—C81.381 (3)C13—C161.370 (4)
N4—C71.468 (3)C14—H140.9500
N5—C91.392 (3)C15—H15A0.9800
N5—C111.415 (3)C15—H15B0.9800
N5—C101.471 (3)C15—H15C0.9800
N6—C131.368 (3)
N7—Ag—N3165.48 (8)H4A—C4—H4C109.5
N7—Ag—O1w98.70 (8)H4B—C4—H4C109.5
N3—Ag—O1w95.81 (7)N3—C5—N2127.2 (2)
N7—Ag—O790.01 (7)N3—C5—C8110.6 (2)
N3—Ag—O788.93 (7)N2—C5—C8122.2 (2)
O1w—Ag—O792.39 (7)N4—C6—N3113.1 (2)
O6—S1—O5115.21 (14)N4—C6—H6123.5
O6—S1—O7114.71 (13)N3—C6—H6123.5
O5—S1—O7114.71 (12)N4—C7—H7A109.5
O6—S1—C17104.22 (13)N4—C7—H7B109.5
O5—S1—C17103.14 (13)H7A—C7—H7B109.5
O7—S1—C17102.51 (12)N4—C7—H7C109.5
Ag—O1w—H1w123.9H7A—C7—H7C109.5
Ag—O1w—H2w125.1H7B—C7—H7C109.5
H1W—O1w—H2w111.1C5—C8—N4106.2 (2)
S1—O7—Ag136.78 (12)C5—C8—C1122.5 (2)
C1—N1—C3126.5 (2)N4—C8—C1131.3 (2)
C1—N1—C2116.8 (2)O3—C9—N5122.4 (2)
C3—N1—C2116.7 (2)O3—C9—C16125.2 (2)
C5—N2—C3119.6 (2)N5—C9—C16112.4 (2)
C5—N2—C4121.2 (2)N5—C10—H10A109.5
C3—N2—C4119.1 (2)N5—C10—H10B109.5
C6—N3—C5103.9 (2)H10A—C10—H10B109.5
C6—N3—Ag119.15 (18)N5—C10—H10C109.5
C5—N3—Ag136.34 (18)H10A—C10—H10C109.5
C6—N4—C8106.3 (2)H10B—C10—H10C109.5
C6—N4—C7126.5 (2)O4—C11—N6122.3 (2)
C8—N4—C7127.3 (2)O4—C11—N5121.0 (2)
C9—N5—C11126.4 (2)N6—C11—N5116.6 (2)
C9—N5—C10117.3 (2)N6—C12—H12A109.5
C11—N5—C10116.0 (2)N6—C12—H12B109.5
C13—N6—C11119.6 (2)H12A—C12—H12B109.5
C13—N6—C12120.8 (2)N6—C12—H12C109.5
C11—N6—C12119.6 (2)H12A—C12—H12C109.5
C14—N7—C13104.0 (2)H12B—C12—H12C109.5
C14—N7—Ag119.11 (17)N7—C13—N6127.1 (2)
C13—N7—Ag136.45 (18)N7—C13—C16110.8 (2)
C14—N8—C16106.0 (2)N6—C13—C16122.1 (2)
C14—N8—C15126.0 (2)N8—C14—N7113.2 (2)
C16—N8—C15127.9 (2)N8—C14—H14123.4
O1—C1—N1121.8 (2)N7—C14—H14123.4
O1—C1—C8125.7 (2)N8—C15—H15A109.5
N1—C1—C8112.5 (2)N8—C15—H15B109.5
N1—C2—H2A109.5H15A—C15—H15B109.5
N1—C2—H2B109.5N8—C15—H15C109.5
H2A—C2—H2B109.5H15A—C15—H15C109.5
N1—C2—H2C109.5H15B—C15—H15C109.5
H2A—C2—H2C109.5C13—C16—N8106.0 (2)
H2B—C2—H2C109.5C13—C16—C9122.8 (2)
O2—C3—N2122.2 (2)N8—C16—C9131.2 (2)
O2—C3—N1121.2 (2)F2—C17—F1108.1 (2)
N2—C3—N1116.6 (2)F2—C17—F3107.9 (2)
N2—C4—H4A109.5F1—C17—F3107.0 (2)
N2—C4—H4B109.5F2—C17—S1112.01 (19)
H4A—C4—H4B109.5F1—C17—S1110.82 (19)
N2—C4—H4C109.5F3—C17—S1110.9 (2)
O6—S1—O7—Ag66.6 (2)O1—C1—C8—C5−178.7 (2)
O5—S1—O7—Ag−70.1 (2)N1—C1—C8—C50.9 (3)
C17—S1—O7—Ag178.87 (16)O1—C1—C8—N40.7 (5)
N7—Ag—O7—S178.84 (17)N1—C1—C8—N4−179.7 (2)
N3—Ag—O7—S1−86.68 (17)C11—N5—C9—O3−175.7 (2)
O1w—Ag—O7—S1177.55 (17)C10—N5—C9—O3−2.2 (4)
N7—Ag—N3—C6−62.4 (4)C11—N5—C9—C164.1 (4)
O1w—Ag—N3—C6115.84 (19)C10—N5—C9—C16177.6 (2)
O7—Ag—N3—C623.54 (19)C13—N6—C11—O4−179.2 (2)
N7—Ag—N3—C5128.5 (3)C12—N6—C11—O4−2.8 (4)
O1w—Ag—N3—C5−53.3 (3)C13—N6—C11—N52.8 (3)
O7—Ag—N3—C5−145.6 (2)C12—N6—C11—N5179.2 (2)
N3—Ag—N7—C1467.4 (4)C9—N5—C11—O4177.6 (2)
O1w—Ag—N7—C14−110.8 (2)C10—N5—C11—O44.1 (4)
O7—Ag—N7—C14−18.4 (2)C9—N5—C11—N6−4.3 (4)
N3—Ag—N7—C13−121.7 (3)C10—N5—C11—N6−177.8 (2)
O1w—Ag—N7—C1360.1 (3)C14—N7—C13—N6178.6 (2)
O7—Ag—N7—C13152.5 (3)Ag—N7—C13—N66.8 (4)
C3—N1—C1—O1178.0 (2)C14—N7—C13—C16−0.5 (3)
C2—N1—C1—O11.0 (4)Ag—N7—C13—C16−172.28 (19)
C3—N1—C1—C8−1.7 (3)C11—N6—C13—N7179.3 (2)
C2—N1—C1—C8−178.6 (2)C12—N6—C13—N72.9 (4)
C5—N2—C3—O2178.4 (2)C11—N6—C13—C16−1.7 (4)
C4—N2—C3—O21.6 (4)C12—N6—C13—C16−178.1 (2)
C5—N2—C3—N1−2.3 (3)C16—N8—C14—N70.1 (3)
C4—N2—C3—N1−179.2 (2)C15—N8—C14—N7−178.3 (2)
C1—N1—C3—O2−178.3 (2)C13—N7—C14—N80.2 (3)
C2—N1—C3—O2−1.4 (4)Ag—N7—C14—N8173.80 (17)
C1—N1—C3—N22.4 (4)N7—C13—C16—N80.5 (3)
C2—N1—C3—N2179.3 (2)N6—C13—C16—N8−178.7 (2)
C6—N3—C5—N2−179.1 (2)N7—C13—C16—C9−179.1 (2)
Ag—N3—C5—N2−8.8 (4)N6—C13—C16—C91.7 (4)
C6—N3—C5—C80.6 (3)C14—N8—C16—C13−0.3 (3)
Ag—N3—C5—C8170.88 (18)C15—N8—C16—C13178.0 (2)
C3—N2—C5—N3−178.5 (2)C14—N8—C16—C9179.2 (3)
C4—N2—C5—N3−1.7 (4)C15—N8—C16—C9−2.5 (4)
C3—N2—C5—C81.8 (4)O3—C9—C16—C13177.1 (2)
C4—N2—C5—C8178.6 (2)N5—C9—C16—C13−2.7 (4)
C8—N4—C6—N30.5 (3)O3—C9—C16—N8−2.4 (5)
C7—N4—C6—N3−179.7 (2)N5—C9—C16—N8177.8 (3)
C5—N3—C6—N4−0.7 (3)O6—S1—C17—F2−62.1 (2)
Ag—N3—C6—N4−172.98 (17)O5—S1—C17—F258.6 (2)
N3—C5—C8—N4−0.4 (3)O7—S1—C17—F2178.0 (2)
N2—C5—C8—N4179.4 (2)O6—S1—C17—F1177.1 (2)
N3—C5—C8—C1179.2 (2)O5—S1—C17—F1−62.2 (2)
N2—C5—C8—C1−1.1 (4)O7—S1—C17—F157.3 (2)
C6—N4—C8—C50.0 (3)O6—S1—C17—F358.5 (2)
C7—N4—C8—C5−179.9 (2)O5—S1—C17—F3179.17 (19)
C6—N4—C8—C1−179.5 (3)O7—S1—C17—F3−61.4 (2)
C7—N4—C8—C10.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1w···O1i0.841.892.724 (3)170
O1w—H2w···O3ii0.841.892.701 (3)163
C10—H10c···O1wii0.982.553.428 (4)149
C15—H15c···O4ii0.982.603.382 (4)137
C4—H4b···O6iii0.982.413.252 (4)144
C12—H12c···O5iii0.982.363.278 (4)155

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5627).

References

  • Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167–m1168. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des.10, 1269–1282.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography