PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1195–m1196.
Published online 2010 September 4. doi:  10.1107/S1600536810034550
PMCID: PMC2983136

[μ-N,N,N′,N′-Tetra­kis(2-pyridyl­meth­yl)butane-1,4-diamine]­bis­[diacetato­cadmium(II)] nona­hydrate

Abstract

The title dinuclear complex, [Cd2(CH3CO2)4(C28H32N6)]·9H2O, is located on a crystallographic inversion center. The unique CdII ion displays a 5 + 2 coordination. A distorted square-pyramidal geometry is formed by the dipicolyl­amine unit of the ligand via the N atoms in a meridional fashion and two O atoms of the acetate ligands with short Cd—O distances. The coordination is completed by two loosely bound O atoms of the acetate ligands. The Cd—N distances involving the pyridine N atoms differ slightly from each other and the Cd—N distance involving the tertiary N atom is the longest. In the crystal structure, complex mol­ecules and solvent water mol­ecules are connected into a three-dimensional network via inter­molecular O—H(...)O hydrogen bonds. One of the water mol­ecules lies on a twofold rotation axis.

Related literature

For related crystal structures of tetra­kis­(pyridin-2-yl-meth­yl)alkyl-diamine compounds, see: Fujihara et al. (2004 [triangle]); Mambanda et al. (2007 [triangle]). For dinuclear platinum complexes of similar ligands, see: Ertürk et al. (2007 [triangle]). For the superoxide dismutase activity of iron complexes, see: Tamura et al. (2000 [triangle]). For the use of the dipicolyl­amine moiety for binding of the M(CO)3 core (M = Re, 99mTc), see: Bartholomä et al. (2009 [triangle]). For crystal structures closely related to the title compound, see: Bartholomä et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1195-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C2H3O2)4(C28H32N6)]·9H2O
  • M r = 1075.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1195-efi1.jpg
  • a = 15.9680 (17) Å
  • b = 11.4320 (12) Å
  • c = 26.451 (3) Å
  • β = 100.127 (2)°
  • V = 4753.3 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 90 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.760, T max = 0.910
  • 23441 measured reflections
  • 5847 independent reflections
  • 5621 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.103
  • S = 1.20
  • 5847 reflections
  • 314 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.55 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034550/lh5104sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034550/lh5104Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by funding from Syracuse University.

supplementary crystallographic information

Comment

The described ligand N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine has been used as starting material in the hydrothermal synthesis of metal-organic transition metal/molybdateoxide frameworks in the principal author's laboratory. The dipicolylamine moiety has originally been used in our laboratory as metal chelating entity for binding of the M(CO)3 core (M = Re,99mTc) for radiopharmaceutical purposes. However, a different coordination mode has been observed for the M(CO)3 core in which the dipicolylamine metal chelate is bound in a facial manner (Bartholomä, 2009).

Crystal structures of the ligands N1,N1,N3,N3-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine have been described recently (Fujihara, 2004; Mambanda, 2007). Superoxide dismutase activity of iron(II) complexes of N1,N1,N3,N3-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and related ligands has been investigated by Tamura et al. (2000). Studies on the thermodynamic and kinetic behaviour of the reaction of platinum(II) complexes of higher ligand homologues with chloride have been performed by Ertürk et al. (2007).

The title complex was prepared as part of a series with different cadmium and copper salts to study the coordination properties of the ligand with these metals without the interaction of metaloxide clusters (Bartholomä, 2010b,c,d). We have reported another crystal structure of a molecular dinuclear cadmium complex using the corresponding nitrate salt as metal source (Bartholomä, 2010a). In the cadmium nitrate structure, the Cd—N distances involving the pyridine N atoms [2.250 (2) Å and 2.251 (2) Å] are slightly shorter whereas the Cd—N distance involving the tertiary nitrogen atom [2.427 (2) Å] is marginally longer when compared to the related distances in the title compound.

Experimental

N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine. An amount of 1.00 g (11.34 mmol) 1,4-diaminobutane was dissolved in 30 ml anhydrous dichloroethane under an inert atmosphere (argon) followed by the addition of 4.55 ml (47.65 mmol) pyridine-2-carboxaldehyde. The mixture was stirred for 15 min at r.t. and then cooled with an ice bath prior to the portionwise addition of 14.43 g (68.06 mmol) sodium triacetoxyborohydride (gas evolution, exothermic reaction). The reaction was stirred overnight allowing the temperature slowly to rise to room temperature. The reaction was quenched by the dropwise addition of saturated sodium bicarbonate solution and stirring was continued until the gas evolution ceased. The mixture was separated and the organic layer was further washed with saturated sodium bicarbonate solution, water and brine. The organic phase was dried with anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure. The crude reaction mixture was then purified by silica gel column chromatography starting with chloroform and increasing gradient to chloroform:methanol 10:1 (v/v). Yield: 4.02 g (78%). 1H NMR (CDCl3): δ = 8.40 (m, 4H), 7.51 (m, 4H), 7.39 (d, J = 7.81 Hz, 4H), 7.02 (m, 4H), 3.67 (s, 8H), 2.39 (m, 4H), 1.42 (m, 4H) p.p.m..

Synthesis of metal complex. To 2 ml of an aqueous solution of cadmium acetate, two equivalents (50 mg, 0.11 mmol) of N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine in 2 ml methanol were added followed by the addition of 2 ml N,N-dimethylformamide. Single crystals were obtained after a week by slow evaporation of the solvents at room temperature.

Refinement

All H atoms were placed in idealized positions and refined using a riding-model approximation with C—H(aryl) = 0.95Å, C—H(methyl) = 0.98Å and C—H (methylene) = 0.99Å and Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene/aryl). Water hydrogen atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The crystal structure of the title complex. The displacement ellipsoids are drawn at 50% probability level. Water of crystallization and hydrogen atoms are omitted for clarity. Unlabeled atoms are related by the symmetry code (-x, -y+1, -z).

Crystal data

[Cd2(C2H3O2)4(C28H32N6)]·9H2OF(000) = 2208
Mr = 1075.72Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5663 reflections
a = 15.9680 (17) Åθ = 2.6–28.3°
b = 11.4320 (12) ŵ = 0.97 mm1
c = 26.451 (3) ÅT = 90 K
β = 100.127 (2)°Block, colourless
V = 4753.3 (9) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer5847 independent reflections
Radiation source: fine-focus sealed tube5621 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.2°
[var phi] and ω scansh = −20→21
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −15→15
Tmin = 0.760, Tmax = 0.910l = −35→34
23441 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.20w = 1/[σ2(Fo2) + (0.0355P)2 + 21.0991P] where P = (Fo2 + 2Fc2)/3
5847 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.165978 (14)0.604997 (19)0.132379 (8)0.02575 (8)
O10.2134 (2)0.4939 (3)0.21610 (10)0.0556 (9)
O20.2542 (2)0.6682 (3)0.20295 (11)0.0560 (8)
O30.2906 (2)0.7203 (3)0.09388 (13)0.0616 (9)
O40.15464 (17)0.7426 (2)0.07125 (11)0.0423 (6)
O50.00000.2308 (3)0.25000.0322 (7)
O60.00239 (19)0.8361 (3)0.02426 (12)0.0402 (6)
O70.85601 (17)0.3567 (3)0.22061 (12)0.0377 (6)
O80.0253 (2)0.0574 (3)0.07224 (12)0.0418 (6)
O90.4442 (2)0.6321 (3)0.15079 (13)0.0437 (7)
N10.05268 (16)0.4637 (2)0.12010 (9)0.0228 (5)
N20.04401 (19)0.6870 (3)0.15915 (10)0.0300 (6)
N30.21759 (17)0.4384 (2)0.09883 (10)0.0259 (5)
C10.0067 (2)0.4816 (3)0.16377 (12)0.0276 (6)
H1A0.04190.45170.19570.033*
H1B−0.04710.43660.15750.033*
C2−0.0127 (2)0.6095 (3)0.17043 (11)0.0273 (6)
C3−0.0848 (2)0.6442 (3)0.18900 (13)0.0349 (7)
H3−0.12410.58780.19710.042*
C4−0.0988 (3)0.7620 (4)0.19562 (14)0.0407 (8)
H4−0.14740.78760.20880.049*
C5−0.0413 (3)0.8423 (3)0.18282 (13)0.0396 (8)
H5−0.05000.92390.18640.047*
C60.0289 (3)0.8011 (3)0.16482 (13)0.0361 (8)
H60.06860.85610.15600.043*
C70.0917 (2)0.3463 (3)0.12297 (12)0.0270 (6)
H7A0.04980.28990.10490.032*
H7B0.10560.32220.15940.032*
C80.17205 (19)0.3403 (3)0.09967 (11)0.0246 (6)
C90.1976 (2)0.2339 (3)0.08241 (12)0.0299 (7)
H90.16380.16580.08320.036*
C100.2736 (2)0.2291 (3)0.06395 (13)0.0339 (7)
H100.29280.15720.05210.041*
C110.3211 (2)0.3300 (3)0.06300 (13)0.0332 (7)
H110.37330.32840.05050.040*
C120.2915 (2)0.4325 (3)0.08031 (12)0.0301 (7)
H120.32400.50180.07930.036*
C13−0.00785 (19)0.4817 (3)0.07122 (11)0.0264 (6)
H13A−0.03800.55670.07330.032*
H13B−0.05090.41850.06750.032*
C140.03306 (18)0.4836 (3)0.02357 (11)0.0246 (6)
H14A0.05710.40570.01840.029*
H14B0.08010.54130.02810.029*
C150.2586 (2)0.5762 (3)0.23017 (13)0.0387 (8)
C160.3163 (3)0.5767 (5)0.28214 (16)0.0603 (14)
H16A0.29530.51990.30470.090*
H16B0.31660.65500.29730.090*
H16C0.37420.55550.27800.090*
C170.2281 (3)0.7765 (4)0.07178 (16)0.0440 (9)
C180.2414 (3)0.8863 (4)0.0423 (2)0.0635 (14)
H18A0.29590.88130.03020.095*
H18B0.24190.95450.06480.095*
H18C0.19510.89440.01280.095*
H8B0.017 (3)−0.008 (4)0.0639 (16)0.033 (11)*
H5A0.039 (2)0.271 (4)0.2553 (17)0.035 (11)*
H6B0.001 (3)0.859 (4)−0.007 (2)0.048 (13)*
H8A0.002 (3)0.071 (4)0.093 (2)0.049 (15)*
H7C0.835 (3)0.395 (4)0.2383 (19)0.048 (14)*
H9B0.463 (3)0.653 (4)0.1789 (19)0.043 (13)*
H6A0.047 (3)0.812 (4)0.0345 (19)0.052 (15)*
H7D0.824 (3)0.309 (5)0.2106 (19)0.054 (15)*
H9A0.400 (4)0.665 (5)0.141 (2)0.069 (18)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02604 (13)0.02573 (12)0.02352 (12)−0.00736 (8)−0.00101 (8)0.00419 (8)
O10.0564 (18)0.072 (2)0.0323 (14)−0.0304 (16)−0.0097 (12)0.0150 (14)
O20.0591 (19)0.0571 (19)0.0434 (16)−0.0261 (15)−0.0137 (14)0.0117 (14)
O30.0560 (19)0.065 (2)0.0574 (19)0.0113 (16)−0.0089 (15)0.0048 (16)
O40.0395 (14)0.0400 (14)0.0471 (15)−0.0045 (11)0.0070 (12)0.0182 (12)
O50.0285 (18)0.0317 (18)0.0355 (18)0.0000.0031 (15)0.000
O60.0330 (15)0.0471 (16)0.0420 (16)0.0024 (12)0.0104 (12)0.0054 (13)
O70.0262 (13)0.0366 (14)0.0509 (16)−0.0037 (11)0.0086 (12)−0.0113 (12)
O80.0517 (17)0.0372 (16)0.0395 (15)−0.0072 (13)0.0165 (13)−0.0059 (12)
O90.0422 (16)0.0450 (16)0.0430 (17)0.0027 (13)0.0049 (13)−0.0166 (13)
N10.0230 (12)0.0252 (12)0.0198 (11)−0.0018 (10)0.0026 (9)0.0023 (9)
N20.0377 (15)0.0313 (14)0.0202 (12)−0.0047 (12)0.0033 (11)0.0014 (10)
N30.0250 (13)0.0292 (13)0.0209 (12)−0.0040 (10)−0.0025 (10)0.0043 (10)
C10.0308 (16)0.0300 (16)0.0225 (14)−0.0035 (13)0.0062 (12)0.0055 (12)
C20.0330 (16)0.0311 (16)0.0172 (13)−0.0019 (13)0.0022 (11)0.0031 (11)
C30.0371 (18)0.0418 (19)0.0265 (16)0.0007 (15)0.0072 (14)0.0027 (14)
C40.045 (2)0.047 (2)0.0302 (17)0.0088 (17)0.0070 (15)−0.0028 (15)
C50.055 (2)0.0332 (18)0.0279 (17)0.0057 (16)0.0014 (16)−0.0036 (14)
C60.048 (2)0.0319 (17)0.0264 (16)−0.0060 (15)0.0022 (14)−0.0021 (13)
C70.0287 (15)0.0219 (14)0.0302 (15)−0.0033 (12)0.0047 (12)0.0038 (12)
C80.0237 (14)0.0273 (15)0.0210 (13)−0.0030 (12)−0.0014 (11)0.0036 (11)
C90.0296 (16)0.0307 (16)0.0280 (15)−0.0045 (13)0.0009 (12)0.0026 (12)
C100.0331 (17)0.0369 (18)0.0294 (16)0.0033 (14)−0.0007 (13)−0.0011 (14)
C110.0255 (16)0.0435 (19)0.0298 (16)−0.0024 (14)0.0027 (13)0.0017 (14)
C120.0246 (15)0.0388 (17)0.0250 (15)−0.0062 (13)−0.0005 (12)0.0039 (13)
C130.0232 (14)0.0348 (16)0.0195 (13)−0.0054 (12)−0.0009 (11)0.0000 (12)
C140.0211 (14)0.0299 (15)0.0211 (14)−0.0029 (12)−0.0007 (11)−0.0003 (11)
C150.041 (2)0.045 (2)0.0262 (16)−0.0158 (16)−0.0051 (14)0.0073 (14)
C160.056 (3)0.081 (3)0.035 (2)−0.033 (2)−0.0160 (19)0.016 (2)
C170.047 (2)0.041 (2)0.041 (2)−0.0010 (17)−0.0010 (17)0.0084 (16)
C180.055 (3)0.053 (3)0.085 (4)−0.008 (2)0.019 (3)0.030 (3)

Geometric parameters (Å, °)

Cd1—O42.240 (2)C3—H30.9500
Cd1—O42.240 (2)C4—C51.382 (6)
Cd1—O22.251 (3)C4—H40.9500
Cd1—N32.313 (3)C5—C61.376 (6)
Cd1—N22.379 (3)C5—H50.9500
Cd1—N12.405 (3)C6—H60.9500
Cd1—O12.550 (3)C7—C81.519 (4)
Cd1—O32.729 (4)C7—H7A0.9900
O1—C151.205 (5)C7—H7B0.9900
O2—C151.269 (5)C8—C91.386 (5)
O3—C171.242 (5)C9—C101.386 (5)
O4—C171.233 (5)C9—H90.9500
O5—H5A0.76 (4)C10—C111.384 (5)
O6—H6B0.85 (5)C10—H100.9500
O6—H6A0.77 (5)C11—C121.371 (5)
O7—H7C0.76 (5)C11—H110.9500
O7—H7D0.77 (5)C12—H120.9500
O8—H8B0.78 (5)C13—C141.518 (4)
O8—H8A0.73 (5)C13—H13A0.9900
O9—H9B0.79 (5)C13—H13B0.9900
O9—H9A0.80 (6)C14—C14i1.532 (6)
N1—C71.475 (4)C14—H14A0.9900
N1—C131.486 (4)C14—H14B0.9900
N1—C11.488 (4)C15—C161.514 (5)
N2—C21.338 (4)C16—H16A0.9800
N2—C61.340 (5)C16—H16B0.9800
N3—C81.339 (4)C16—H16C0.9800
N3—C121.357 (4)C17—O41.233 (5)
C1—C21.512 (5)C17—O31.242 (5)
C1—H1A0.9900C17—C181.513 (6)
C1—H1B0.9900C18—H18A0.9800
C2—C31.387 (5)C18—H18B0.9800
C3—C41.381 (5)C18—H18C0.9800
O4—Cd1—O40.0 (2)C6—C5—C4118.3 (3)
O4—Cd1—O2109.44 (11)C6—C5—H5120.8
O4—Cd1—O2109.44 (11)C4—C5—H5120.8
O4—Cd1—N3106.87 (10)N2—C6—C5123.1 (4)
O4—Cd1—N3106.87 (10)N2—C6—H6118.5
O2—Cd1—N3111.66 (11)C5—C6—H6118.5
O4—Cd1—N288.38 (10)N1—C7—C8113.6 (2)
O4—Cd1—N288.38 (10)N1—C7—H7A108.9
O2—Cd1—N293.01 (12)C8—C7—H7A108.9
N3—Cd1—N2143.54 (9)N1—C7—H7B108.9
O4—Cd1—N1114.26 (9)C8—C7—H7B108.9
O4—Cd1—N1114.26 (9)H7A—C7—H7B107.7
O2—Cd1—N1132.37 (10)N3—C8—C9122.5 (3)
N3—Cd1—N172.86 (9)N3—C8—C7117.9 (3)
N2—Cd1—N170.68 (9)C9—C8—C7119.5 (3)
O4—Cd1—O1161.92 (10)C8—C9—C10118.5 (3)
O4—Cd1—O1161.92 (10)C8—C9—H9120.7
O2—Cd1—O152.59 (10)C10—C9—H9120.7
N3—Cd1—O181.46 (10)C11—C10—C9119.3 (3)
N2—Cd1—O194.11 (10)C11—C10—H10120.3
N1—Cd1—O183.35 (9)C9—C10—H10120.3
O4—Cd1—O350.44 (9)C12—C11—C10119.0 (3)
O4—Cd1—O350.44 (9)C12—C11—H11120.5
O2—Cd1—O376.31 (11)C10—C11—H11120.5
N3—Cd1—O385.54 (10)N3—C12—C11122.4 (3)
N2—Cd1—O3127.56 (10)N3—C12—H12118.8
N1—Cd1—O3148.74 (9)C11—C12—H12118.8
O1—Cd1—O3116.10 (9)N1—C13—C14114.5 (2)
C15—O1—Cd187.1 (2)N1—C13—H13A108.6
C15—O2—Cd199.7 (2)C14—C13—H13A108.6
C17—O3—Cd181.2 (3)N1—C13—H13B108.6
C17—O4—Cd1104.9 (2)C14—C13—H13B108.6
H6B—O6—H6A108 (5)H13A—C13—H13B107.6
H7C—O7—H7D106 (5)C13—C14—C14i110.1 (3)
H8B—O8—H8A110 (5)C13—C14—H14A109.6
H9B—O9—H9A109 (5)C14i—C14—H14A109.6
C7—N1—C13112.0 (2)C13—C14—H14B109.6
C7—N1—C1110.3 (2)C14i—C14—H14B109.6
C13—N1—C1108.8 (2)H14A—C14—H14B108.2
C7—N1—Cd1107.62 (18)O1—C15—O2120.1 (3)
C13—N1—Cd1112.52 (18)O1—C15—C16121.2 (3)
C1—N1—Cd1105.36 (18)O2—C15—C16118.5 (3)
C2—N2—C6118.6 (3)C15—C16—H16A109.5
C2—N2—Cd1115.3 (2)C15—C16—H16B109.5
C6—N2—Cd1126.1 (2)H16A—C16—H16B109.5
C8—N3—C12118.3 (3)C15—C16—H16C109.5
C8—N3—Cd1116.9 (2)H16A—C16—H16C109.5
C12—N3—Cd1124.8 (2)H16B—C16—H16C109.5
N1—C1—C2111.3 (2)O4—C17—O3121.8 (4)
N1—C1—H1A109.4O4—C17—O3121.8 (4)
C2—C1—H1A109.4O4—C17—O3121.8 (4)
N1—C1—H1B109.4O4—C17—O3121.8 (4)
C2—C1—H1B109.4O4—C17—C18118.3 (4)
H1A—C1—H1B108.0O4—C17—C18118.3 (4)
N2—C2—C3121.7 (3)O3—C17—C18119.8 (4)
N2—C2—C1117.0 (3)O3—C17—C18119.8 (4)
C3—C2—C1121.2 (3)C17—C18—H18A109.5
C4—C3—C2119.2 (4)C17—C18—H18B109.5
C4—C3—H3120.4H18A—C18—H18B109.5
C2—C3—H3120.4C17—C18—H18C109.5
C3—C4—C5119.1 (4)H18A—C18—H18C109.5
C3—C4—H4120.4H18B—C18—H18C109.5
C5—C4—H4120.4
O4—Cd1—O1—C152.7 (5)N3—Cd1—N2—C6−160.9 (2)
O4—Cd1—O1—C152.7 (5)N1—Cd1—N2—C6−160.6 (3)
O2—Cd1—O1—C15−4.0 (3)O1—Cd1—N2—C6117.9 (3)
N3—Cd1—O1—C15121.8 (3)O3—Cd1—N2—C6−9.8 (3)
N2—Cd1—O1—C15−94.7 (3)O4—Cd1—N3—C8−125.3 (2)
N1—Cd1—O1—C15−164.7 (3)O4—Cd1—N3—C8−125.3 (2)
O3—Cd1—O1—C1541.0 (3)O2—Cd1—N3—C8115.0 (2)
O4—Cd1—O2—C15−173.9 (3)N2—Cd1—N3—C8−14.2 (3)
O4—Cd1—O2—C15−173.9 (3)N1—Cd1—N3—C8−14.5 (2)
N3—Cd1—O2—C15−55.8 (3)O1—Cd1—N3—C871.1 (2)
N2—Cd1—O2—C1596.7 (3)O3—Cd1—N3—C8−171.6 (2)
N1—Cd1—O2—C1530.4 (3)O4—Cd1—N3—C1257.2 (3)
O1—Cd1—O2—C153.9 (3)O4—Cd1—N3—C1257.2 (3)
O3—Cd1—O2—C15−135.3 (3)O2—Cd1—N3—C12−62.5 (3)
O4—Cd1—O3—O30.00 (18)N2—Cd1—N3—C12168.3 (2)
O4—Cd1—O3—O30.00 (18)N1—Cd1—N3—C12168.0 (3)
O2—Cd1—O3—O30.00 (11)O1—Cd1—N3—C12−106.4 (2)
N3—Cd1—O3—O30.00 (13)O3—Cd1—N3—C1210.9 (2)
N2—Cd1—O3—O30.00 (13)C7—N1—C1—C2164.2 (3)
N1—Cd1—O3—O30.00 (6)C13—N1—C1—C2−72.5 (3)
O1—Cd1—O3—O30.00 (16)Cd1—N1—C1—C248.4 (3)
O4—Cd1—O3—C177.3 (2)C6—N2—C2—C3−1.8 (5)
O4—Cd1—O3—C177.3 (2)Cd1—N2—C2—C3176.7 (2)
O2—Cd1—O3—C17−122.9 (3)C6—N2—C2—C1−179.7 (3)
N3—Cd1—O3—C17123.5 (3)Cd1—N2—C2—C1−1.2 (3)
N2—Cd1—O3—C17−39.8 (3)N1—C1—C2—N2−33.5 (4)
N1—Cd1—O3—C1777.8 (3)N1—C1—C2—C3148.6 (3)
O1—Cd1—O3—C17−158.3 (3)N2—C2—C3—C40.6 (5)
O2—Cd1—O4—O40.0 (3)C1—C2—C3—C4178.4 (3)
N3—Cd1—O4—O40.0 (3)C2—C3—C4—C51.0 (5)
N2—Cd1—O4—O40.0 (3)C3—C4—C5—C6−1.2 (5)
N1—Cd1—O4—O40.0 (2)C2—N2—C6—C51.5 (5)
O1—Cd1—O4—O40.0 (4)Cd1—N2—C6—C5−176.8 (2)
O3—Cd1—O4—O40.0 (2)C4—C5—C6—N20.0 (5)
O4—Cd1—O4—C170(19)C13—N1—C7—C888.0 (3)
O2—Cd1—O4—C1744.4 (3)C1—N1—C7—C8−150.7 (3)
N3—Cd1—O4—C17−76.6 (3)Cd1—N1—C7—C8−36.2 (3)
N2—Cd1—O4—C17137.0 (3)C12—N3—C8—C90.0 (4)
N1—Cd1—O4—C17−155.0 (3)Cd1—N3—C8—C9−177.7 (2)
O1—Cd1—O4—C1738.8 (5)C12—N3—C8—C7176.9 (3)
O3—Cd1—O4—C17−7.5 (3)Cd1—N3—C8—C7−0.7 (3)
O4—Cd1—N1—C7127.65 (19)N1—C7—C8—N326.7 (4)
O4—Cd1—N1—C7127.65 (19)N1—C7—C8—C9−156.3 (3)
O2—Cd1—N1—C7−77.5 (2)N3—C8—C9—C100.5 (5)
N3—Cd1—N1—C726.46 (18)C7—C8—C9—C10−176.4 (3)
N2—Cd1—N1—C7−153.4 (2)C8—C9—C10—C11−0.4 (5)
O1—Cd1—N1—C7−56.62 (19)C9—C10—C11—C12−0.1 (5)
O3—Cd1—N1—C774.8 (3)C8—N3—C12—C11−0.5 (4)
O4—Cd1—N1—C133.7 (2)Cd1—N3—C12—C11176.9 (2)
O4—Cd1—N1—C133.7 (2)C10—C11—C12—N30.6 (5)
O2—Cd1—N1—C13158.6 (2)C7—N1—C13—C14−66.3 (3)
N3—Cd1—N1—C13−97.5 (2)C1—N1—C13—C14171.5 (3)
N2—Cd1—N1—C1382.7 (2)Cd1—N1—C13—C1455.2 (3)
O1—Cd1—N1—C13179.5 (2)N1—C13—C14—C14i−173.6 (3)
O3—Cd1—N1—C13−49.1 (3)Cd1—O1—C15—O26.6 (4)
O4—Cd1—N1—C1−114.65 (19)Cd1—O1—C15—C16−178.5 (4)
O4—Cd1—N1—C1−114.65 (19)Cd1—O2—C15—O1−7.5 (5)
O2—Cd1—N1—C140.2 (2)Cd1—O2—C15—C16177.4 (4)
N3—Cd1—N1—C1144.16 (19)Cd1—O4—C17—O40(66)
N2—Cd1—N1—C1−35.66 (18)O4—O4—C17—O30.00 (9)
O1—Cd1—N1—C161.08 (19)Cd1—O4—C17—O315.0 (5)
O3—Cd1—N1—C1−167.51 (19)O4—O4—C17—O30.00 (9)
O4—Cd1—N2—C2137.5 (2)Cd1—O4—C17—O315.0 (5)
O4—Cd1—N2—C2137.5 (2)O4—O4—C17—C180.00 (7)
O2—Cd1—N2—C2−113.1 (2)Cd1—O4—C17—C18−168.0 (4)
N3—Cd1—N2—C220.7 (3)O3—O3—C17—O40.00 (10)
N1—Cd1—N2—C221.0 (2)Cd1—O3—C17—O4−12.0 (4)
O1—Cd1—N2—C2−60.4 (2)O3—O3—C17—O40.00 (10)
O3—Cd1—N2—C2171.8 (2)Cd1—O3—C17—O4−12.0 (4)
O4—Cd1—N2—C6−44.1 (3)Cd1—O3—C17—O30(100)
O4—Cd1—N2—C6−44.1 (3)O3—O3—C17—C180.0 (2)
O2—Cd1—N2—C665.3 (3)Cd1—O3—C17—C18171.1 (4)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9A···O30.80 (6)2.06 (6)2.829 (5)160 (6)
O6—H6A···O40.77 (5)1.98 (5)2.745 (4)170 (5)
O9—H9B···O5ii0.79 (5)2.07 (5)2.852 (3)170 (5)
O7—H7C···O1iii0.76 (5)1.91 (5)2.673 (4)177 (5)
O8—H8A···O9iv0.73 (5)2.04 (5)2.769 (4)172 (5)
O6—H6B···O8i0.85 (5)1.97 (5)2.792 (4)164 (5)
O5—H5A···O7iii0.76 (4)1.96 (4)2.708 (3)170 (5)
O8—H8B···O6v0.78 (5)2.06 (5)2.825 (4)166 (4)

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1, y, −z+1/2; (iv) x−1/2, y−1/2, z; (i) −x, −y+1, −z; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5104).

References

  • Bartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010d). Acta Cryst. E66, m1201–m1202. [PMC free article] [PubMed]
  • Bartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1197. [PMC free article] [PubMed]
  • Bartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1198. [PMC free article] [PubMed]
  • Bartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1199–m1200. [PMC free article] [PubMed]
  • Bartholomä, M., Valliant, J., Maresca, K. P., Babich, J. & Zubieta, J. (2009). Chem. Commun.5, 473–604. [PubMed]
  • Brandenburg, K. & Putz, H. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ertürk, H., Hofmann, A., Puchta, R. & van Eldik, R. (2007). Dalton Trans. pp. 2295–2301. [PubMed]
  • Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o1126–o1128.
  • Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamura, M., Urano, Y., Kikuchi, K., Higuchi, T., Hirobe, M. & Nagano, T. (2000). J. Organomet. Chem.611, 586–592.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography