PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2682.
Published online 2010 September 30. doi:  10.1107/S1600536810038560
PMCID: PMC2983130

tert-Butyl 4-{[5-(4-chloro­phen­yl)-1-(4-fluoro­phen­yl)-1H-pyrazol-3-yl]carbon­yl}piperazine-1-carboxyl­ate

Abstract

In the title pyrazole derivative, C25H26ClFN4O3, both benzene rings are twisted out of the plane through the pyrazole ring, with dihedral angles of 67.62 (10) and 27.63 (10)° for the fluoro- and chloro-substituted rings, respectively. The dihedral angle between the two benzene rings is 64.54 (9)°. The piperazine ring (with a chair conformation) is linked to the pyrazole ring via a carbonyl spacer and is orientated to lie to one side of the pyrazole plane. In addition to an intra­molecular C—H(...)N contact, there are inter­molecular C—H(...)O inter­actions, which generate a supra­molecular chain with an undulating topology along the c axis that is sustained by alternating centrosymmetric ten-membered {(...)HCNCO}2 and {(...)HC3O}2 synthons.

Related literature

For the pharmacological potential of pyrazol derivatives, see: Ragavan et al. (2009 [triangle]). For the synthesis, see: Ragavan et al. (2010 [triangle]). For a related structure, see: Samshuddin et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2682-scheme1.jpg

Experimental

Crystal data

  • C25H26ClFN4O3
  • M r = 484.95
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2682-efi1.jpg
  • a = 6.0568 (5) Å
  • b = 12.0047 (10) Å
  • c = 16.2615 (13) Å
  • α = 88.852 (1)°
  • β = 81.206 (1)°
  • γ = 87.644 (1)°
  • V = 1167.37 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 100 K
  • 0.35 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: analytical (FACES; Bruker, 2009 [triangle]) T min = 0.931, T max = 0.980
  • 11213 measured reflections
  • 5318 independent reflections
  • 4351 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.145
  • S = 1.06
  • 5318 reflections
  • 310 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038560/hb5646sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038560/hb5646Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The anti-bacterial and anti-fungal activities of the azoles are well known and some derivatives are used clinically as anti-microbial agents. However, the emergence of azole-resistant strains of microbes requires the development of new anti-microbial compounds. Pyrazole forms an important class of heterocyclic compounds and many pyrazole derivatives are reported to display a broad spectrum of biological activities, such as anti-inflammatory, anti-fungal, herbicidal, anti-tumour, cytotoxic, and anti-viral activities. Since the high electronegativity of halogens (particularly chlorine and fluorine) in aromatic rings of drug molecules plays an important role in enhancing biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryl rings of 1,5-diaryl pyrazoles. As part of our on-going research aimed at the synthesis of new anti-microbial compounds based on pyrazole (Ragavan et al., 2009, 2010) and reflecting our interest in pyrazole structures (Samshuddin et al., 2010), herein we report the crystallographic characterization of a novel pyrazole derivative, (I).

The pyrazole ring in (I), Fig. 1, is planar (r.m.s. deviation = 0.003 Å) and is connected to two halo-substituted benzene rings. Whereas the chloro-substituted ring is slightly twisted out of the plane of the pyrazoyl ring [dihedral angle = 27.63 (10) °], the fluoro-substituted ring is almost orthogonal [dihedral angle = 67.62 (10) °]; the dihedral angle between the two benzene rings = 64.54 (9) °. The ester derivatized piperazine ring (with a chair conformation) is linked to the pyrazoyl ring via a carbonyl spacer [the N2—C15—C16—N3 torsion angle = 13.6 (3) °] and is orientated to lie to one side of the pyrazoyl plane. Finally, the ester group is co-planar with the C18—N4—C19 plane as seen in the C18—N4—C21—O2 torsion angle of -0.3 (3) °.

In addition to an intramolecular C—H···N bond, there are two significant intermolecular C—H···O contacts of note, Table 1. The latter lead to the formation of an undulating supramolecular chain along the c axis comprising alternating centrosymmetric 10-membered {···HCNCO}2 and {···HC3O}2 synthons, Fig. 2. Chains pack in the ac plane and these stack along the b axis, Fig. 3.

Experimental

The compound was synthesized by the literature method (Ragavan et al., 2010). Colourless blocks of (I) were obtained by recrystallization from absolute ethanol; m.pt. 356.1–357.2 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. (010) and (001).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular chains aligned along the c axis in (I) mediated by C—H···O interactions (orange dashed lines).
Fig. 3.
Unit-cell contents shown in projection down the a axis in (I) showing the stacking of layers along the b direction. The C–H···O contacts are shown as orange dashed lines.

Crystal data

C25H26ClFN4O3Z = 2
Mr = 484.95F(000) = 508
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0568 (5) ÅCell parameters from 3796 reflections
b = 12.0047 (10) Åθ = 3.0–30.6°
c = 16.2615 (13) ŵ = 0.21 mm1
α = 88.852 (1)°T = 100 K
β = 81.206 (1)°Block, colourless
γ = 87.644 (1)°0.35 × 0.10 × 0.10 mm
V = 1167.37 (17) Å3

Data collection

Bruker SMART APEX diffractometer5318 independent reflections
Radiation source: fine-focus sealed tube4351 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scanθmax = 27.5°, θmin = 2.1°
Absorption correction: analytical (FACES; Bruker, 2009)h = −7→7
Tmin = 0.931, Tmax = 0.980k = −15→15
11213 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0829P)2 + 0.4102P] where P = (Fo2 + 2Fc2)/3
5318 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.54699 (8)0.35562 (4)0.36749 (3)0.02774 (15)
F1−0.3361 (2)0.60200 (11)0.83637 (8)0.0351 (3)
O10.6767 (2)−0.00368 (11)0.59753 (8)0.0216 (3)
O20.6127 (2)−0.13676 (12)1.00046 (8)0.0223 (3)
O30.9285 (2)−0.21367 (11)0.92542 (8)0.0186 (3)
N10.1504 (2)0.26137 (12)0.66173 (9)0.0155 (3)
N20.3142 (2)0.20929 (13)0.69823 (10)0.0167 (3)
N30.6639 (2)0.04516 (13)0.73200 (9)0.0150 (3)
N40.6836 (3)−0.11496 (14)0.86022 (10)0.0202 (3)
C10.0220 (3)0.35009 (14)0.70660 (10)0.0148 (3)
C20.1251 (3)0.44859 (15)0.71731 (11)0.0174 (4)
H20.27780.45720.69480.021*
C30.0030 (3)0.53487 (16)0.76141 (12)0.0225 (4)
H30.06990.60330.76920.027*
C4−0.2166 (3)0.51834 (17)0.79337 (12)0.0226 (4)
C5−0.3210 (3)0.42072 (17)0.78344 (12)0.0213 (4)
H5−0.47320.41220.80670.026*
C6−0.2004 (3)0.33534 (16)0.73909 (11)0.0183 (4)
H6−0.26900.26750.73100.022*
C7−0.0359 (3)0.25317 (15)0.53333 (11)0.0154 (4)
C8−0.1139 (3)0.36381 (15)0.52973 (11)0.0180 (4)
H8−0.06180.41780.56340.022*
C9−0.2670 (3)0.39586 (16)0.47737 (12)0.0199 (4)
H9−0.31810.47150.47470.024*
C10−0.3444 (3)0.31675 (16)0.42920 (11)0.0183 (4)
C11−0.2662 (3)0.20696 (16)0.43007 (12)0.0212 (4)
H11−0.31830.15350.39600.025*
C12−0.1106 (3)0.17607 (16)0.48145 (11)0.0188 (4)
H12−0.05360.10110.48140.023*
C130.1254 (3)0.21355 (14)0.58746 (11)0.0147 (3)
C140.2801 (3)0.12616 (15)0.57692 (11)0.0166 (4)
H140.30600.07570.53190.020*
C150.3920 (3)0.12677 (14)0.64627 (11)0.0150 (3)
C160.5851 (3)0.04965 (14)0.65783 (11)0.0149 (3)
C170.5275 (3)0.06276 (15)0.81360 (11)0.0168 (4)
H17A0.38560.10310.80660.020*
H17B0.60830.10870.84820.020*
C180.4778 (3)−0.04902 (16)0.85671 (12)0.0194 (4)
H18A0.3988−0.03650.91390.023*
H18B0.3788−0.09040.82610.023*
C190.8221 (3)−0.13264 (16)0.77930 (11)0.0190 (4)
H19A0.7429−0.17860.74410.023*
H19B0.9640−0.17260.78690.023*
C200.8709 (3)−0.02034 (16)0.73720 (11)0.0180 (4)
H20A0.96640.02140.76900.022*
H20B0.9537−0.03200.68050.022*
C210.7328 (3)−0.15410 (15)0.93439 (11)0.0165 (4)
C221.0055 (3)−0.26720 (16)0.99898 (11)0.0191 (4)
C231.2187 (3)−0.32815 (17)0.96125 (13)0.0250 (4)
H23A1.1842−0.38480.92310.038*
H23B1.2900−0.36421.00560.038*
H23C1.3205−0.27500.93060.038*
C240.8349 (3)−0.34893 (18)1.03985 (14)0.0285 (5)
H24A0.7967−0.39890.99770.043*
H24B0.6998−0.30761.06550.043*
H24C0.8984−0.39281.08260.043*
C251.0532 (3)−0.17857 (18)1.05902 (12)0.0236 (4)
H25A1.1630−0.12781.03010.035*
H25B1.1128−0.21461.10610.035*
H25C0.9145−0.13631.07950.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0254 (3)0.0297 (3)0.0319 (3)−0.0024 (2)−0.0172 (2)0.0069 (2)
F10.0380 (7)0.0319 (7)0.0337 (7)0.0169 (6)−0.0032 (6)−0.0137 (6)
O10.0250 (7)0.0246 (7)0.0150 (6)0.0078 (6)−0.0038 (5)−0.0048 (5)
O20.0206 (7)0.0289 (7)0.0157 (7)0.0027 (5)0.0011 (5)0.0025 (6)
O30.0179 (6)0.0224 (7)0.0154 (6)0.0036 (5)−0.0036 (5)0.0020 (5)
N10.0174 (7)0.0153 (7)0.0146 (7)0.0012 (6)−0.0054 (6)0.0004 (6)
N20.0159 (7)0.0155 (7)0.0192 (8)0.0029 (6)−0.0057 (6)0.0019 (6)
N30.0150 (7)0.0178 (7)0.0117 (7)0.0035 (6)−0.0017 (5)0.0005 (6)
N40.0211 (8)0.0230 (8)0.0148 (7)0.0073 (6)−0.0001 (6)0.0034 (6)
C10.0170 (8)0.0150 (8)0.0123 (8)0.0057 (6)−0.0037 (6)−0.0006 (6)
C20.0180 (8)0.0198 (9)0.0147 (8)−0.0006 (7)−0.0031 (7)0.0003 (7)
C30.0299 (10)0.0169 (9)0.0221 (9)0.0012 (8)−0.0090 (8)−0.0037 (7)
C40.0274 (10)0.0216 (10)0.0185 (9)0.0107 (8)−0.0049 (8)−0.0044 (7)
C50.0173 (9)0.0276 (10)0.0182 (9)0.0042 (7)−0.0018 (7)0.0011 (8)
C60.0197 (9)0.0179 (9)0.0178 (9)0.0005 (7)−0.0043 (7)0.0002 (7)
C70.0141 (8)0.0172 (9)0.0145 (8)0.0000 (6)−0.0015 (6)0.0024 (7)
C80.0202 (9)0.0176 (9)0.0166 (8)−0.0001 (7)−0.0040 (7)−0.0003 (7)
C90.0211 (9)0.0193 (9)0.0194 (9)0.0007 (7)−0.0043 (7)0.0024 (7)
C100.0150 (8)0.0245 (10)0.0157 (8)0.0009 (7)−0.0048 (7)0.0044 (7)
C110.0236 (9)0.0215 (10)0.0203 (9)−0.0035 (7)−0.0083 (7)−0.0007 (7)
C120.0226 (9)0.0185 (9)0.0153 (8)0.0005 (7)−0.0037 (7)0.0007 (7)
C130.0161 (8)0.0147 (8)0.0134 (8)−0.0002 (6)−0.0023 (6)−0.0005 (6)
C140.0185 (8)0.0160 (9)0.0155 (8)−0.0010 (7)−0.0033 (7)0.0002 (7)
C150.0160 (8)0.0127 (8)0.0162 (8)0.0017 (6)−0.0028 (7)0.0000 (7)
C160.0159 (8)0.0139 (8)0.0148 (8)−0.0005 (6)−0.0019 (6)0.0005 (7)
C170.0184 (8)0.0183 (9)0.0126 (8)0.0042 (7)−0.0004 (7)−0.0016 (7)
C180.0167 (8)0.0233 (10)0.0169 (9)0.0040 (7)−0.0008 (7)0.0039 (7)
C190.0210 (9)0.0204 (9)0.0141 (8)0.0087 (7)−0.0006 (7)−0.0021 (7)
C200.0142 (8)0.0243 (10)0.0152 (8)0.0043 (7)−0.0024 (7)0.0013 (7)
C210.0160 (8)0.0139 (8)0.0199 (9)0.0003 (6)−0.0039 (7)0.0001 (7)
C220.0194 (9)0.0220 (9)0.0167 (9)0.0008 (7)−0.0061 (7)0.0041 (7)
C230.0226 (10)0.0252 (10)0.0276 (10)0.0059 (8)−0.0070 (8)0.0011 (8)
C240.0262 (10)0.0279 (11)0.0319 (11)−0.0026 (8)−0.0070 (9)0.0127 (9)
C250.0196 (9)0.0335 (11)0.0175 (9)0.0018 (8)−0.0030 (7)−0.0020 (8)

Geometric parameters (Å, °)

Cl1—C101.7439 (18)C9—H90.9500
F1—C41.355 (2)C10—C111.383 (3)
O1—C161.228 (2)C11—C121.387 (2)
O2—C211.218 (2)C11—H110.9500
O3—C211.349 (2)C12—H120.9500
O3—C221.475 (2)C13—C141.373 (2)
N1—N21.357 (2)C14—C151.402 (2)
N1—C131.379 (2)C14—H140.9500
N1—C11.436 (2)C15—C161.494 (2)
N2—C151.338 (2)C17—C181.521 (3)
N3—C161.363 (2)C17—H17A0.9900
N3—C201.465 (2)C17—H17B0.9900
N3—C171.466 (2)C18—H18A0.9900
N4—C211.356 (2)C18—H18B0.9900
N4—C181.457 (2)C19—C201.519 (3)
N4—C191.463 (2)C19—H19A0.9900
C1—C61.387 (3)C19—H19B0.9900
C1—C21.386 (2)C20—H20A0.9900
C2—C31.392 (3)C20—H20B0.9900
C2—H20.9500C22—C231.509 (3)
C3—C41.373 (3)C22—C241.523 (3)
C3—H30.9500C22—C251.524 (3)
C4—C51.378 (3)C23—H23A0.9800
C5—C61.382 (3)C23—H23B0.9800
C5—H50.9500C23—H23C0.9800
C6—H60.9500C24—H24A0.9800
C7—C81.394 (3)C24—H24B0.9800
C7—C121.398 (2)C24—H24C0.9800
C7—C131.471 (2)C25—H25A0.9800
C8—C91.390 (2)C25—H25B0.9800
C8—H80.9500C25—H25C0.9800
C9—C101.384 (3)
C21—O3—C22119.64 (14)C14—C15—C16124.05 (16)
N2—N1—C13112.50 (14)O1—C16—N3121.74 (16)
N2—N1—C1117.44 (14)O1—C16—C15118.02 (15)
C13—N1—C1129.91 (14)N3—C16—C15120.11 (15)
C15—N2—N1104.23 (14)N3—C17—C18109.81 (14)
C16—N3—C20118.19 (14)N3—C17—H17A109.7
C16—N3—C17125.08 (14)C18—C17—H17A109.7
C20—N3—C17112.72 (14)N3—C17—H17B109.7
C21—N4—C18120.10 (15)C18—C17—H17B109.7
C21—N4—C19125.57 (15)H17A—C17—H17B108.2
C18—N4—C19114.33 (14)N4—C18—C17110.80 (15)
C6—C1—C2121.44 (16)N4—C18—H18A109.5
C6—C1—N1119.72 (16)C17—C18—H18A109.5
C2—C1—N1118.84 (16)N4—C18—H18B109.5
C1—C2—C3119.41 (17)C17—C18—H18B109.5
C1—C2—H2120.3H18A—C18—H18B108.1
C3—C2—H2120.3N4—C19—C20109.09 (15)
C4—C3—C2118.21 (18)N4—C19—H19A109.9
C4—C3—H3120.9C20—C19—H19A109.9
C2—C3—H3120.9N4—C19—H19B109.9
F1—C4—C3118.44 (18)C20—C19—H19B109.9
F1—C4—C5118.57 (18)H19A—C19—H19B108.3
C3—C4—C5122.99 (18)N3—C20—C19111.15 (14)
C4—C5—C6118.84 (18)N3—C20—H20A109.4
C4—C5—H5120.6C19—C20—H20A109.4
C6—C5—H5120.6N3—C20—H20B109.4
C5—C6—C1119.12 (17)C19—C20—H20B109.4
C5—C6—H6120.4H20A—C20—H20B108.0
C1—C6—H6120.4O2—C21—O3124.94 (16)
C8—C7—C12118.48 (16)O2—C21—N4123.32 (17)
C8—C7—C13123.44 (16)O3—C21—N4111.74 (15)
C12—C7—C13118.06 (16)O3—C22—C23102.28 (14)
C9—C8—C7120.63 (17)O3—C22—C24110.27 (15)
C9—C8—H8119.7C23—C22—C24110.76 (17)
C7—C8—H8119.7O3—C22—C25109.96 (15)
C10—C9—C8119.52 (17)C23—C22—C25110.84 (16)
C10—C9—H9120.2C24—C22—C25112.29 (17)
C8—C9—H9120.2C22—C23—H23A109.5
C11—C10—C9121.10 (16)C22—C23—H23B109.5
C11—C10—Cl1119.40 (14)H23A—C23—H23B109.5
C9—C10—Cl1119.49 (14)C22—C23—H23C109.5
C10—C11—C12118.99 (17)H23A—C23—H23C109.5
C10—C11—H11120.5H23B—C23—H23C109.5
C12—C11—H11120.5C22—C24—H24A109.5
C11—C12—C7121.22 (17)C22—C24—H24B109.5
C11—C12—H12119.4H24A—C24—H24B109.5
C7—C12—H12119.4C22—C24—H24C109.5
C14—C13—N1105.62 (15)H24A—C24—H24C109.5
C14—C13—C7129.58 (16)H24B—C24—H24C109.5
N1—C13—C7124.79 (16)C22—C25—H25A109.5
C13—C14—C15105.83 (16)C22—C25—H25B109.5
C13—C14—H14127.1H25A—C25—H25B109.5
C15—C14—H14127.1C22—C25—H25C109.5
N2—C15—C14111.80 (15)H25A—C25—H25C109.5
N2—C15—C16124.02 (15)H25B—C25—H25C109.5
C13—N1—N2—C15−0.52 (19)N1—C13—C14—C15−0.33 (19)
C1—N1—N2—C15175.46 (15)C7—C13—C14—C15179.05 (17)
N2—N1—C1—C6−110.40 (18)N1—N2—C15—C140.29 (19)
C13—N1—C1—C664.8 (2)N1—N2—C15—C16176.34 (16)
N2—N1—C1—C268.8 (2)C13—C14—C15—N20.0 (2)
C13—N1—C1—C2−116.1 (2)C13—C14—C15—C16−176.02 (16)
C6—C1—C2—C3−0.2 (3)C20—N3—C16—O13.6 (3)
N1—C1—C2—C3−179.36 (16)C17—N3—C16—O1−152.18 (17)
C1—C2—C3—C40.5 (3)C20—N3—C16—C15−172.10 (15)
C2—C3—C4—F1179.97 (16)C17—N3—C16—C1532.1 (2)
C2—C3—C4—C5−0.3 (3)N2—C15—C16—O1−162.19 (17)
F1—C4—C5—C6179.53 (16)C14—C15—C16—O113.4 (3)
C3—C4—C5—C6−0.3 (3)N2—C15—C16—N313.6 (3)
C4—C5—C6—C10.5 (3)C14—C15—C16—N3−170.78 (16)
C2—C1—C6—C5−0.3 (3)C16—N3—C17—C18101.11 (19)
N1—C1—C6—C5178.85 (15)C20—N3—C17—C18−55.79 (19)
C12—C7—C8—C91.7 (3)C21—N4—C18—C17124.53 (18)
C13—C7—C8—C9−179.81 (17)C19—N4—C18—C17−55.4 (2)
C7—C8—C9—C100.8 (3)N3—C17—C18—N453.54 (19)
C8—C9—C10—C11−2.3 (3)C21—N4—C19—C20−124.91 (19)
C8—C9—C10—Cl1176.78 (14)C18—N4—C19—C2055.0 (2)
C9—C10—C11—C121.2 (3)C16—N3—C20—C19−101.57 (18)
Cl1—C10—C11—C12−177.88 (14)C17—N3—C20—C1957.07 (19)
C10—C11—C12—C71.4 (3)N4—C19—C20—N3−54.33 (19)
C8—C7—C12—C11−2.9 (3)C22—O3—C21—O22.6 (3)
C13—C7—C12—C11178.60 (17)C22—O3—C21—N4−177.38 (15)
N2—N1—C13—C140.5 (2)C18—N4—C21—O2−0.3 (3)
C1—N1—C13—C14−174.80 (17)C19—N4—C21—O2179.57 (17)
N2—N1—C13—C7−178.88 (16)C18—N4—C21—O3179.63 (15)
C1—N1—C13—C75.8 (3)C19—N4—C21—O3−0.5 (3)
C8—C7—C13—C14−151.42 (19)C21—O3—C22—C23177.25 (15)
C12—C7—C13—C1427.0 (3)C21—O3—C22—C2459.4 (2)
C8—C7—C13—N127.9 (3)C21—O3—C22—C25−64.9 (2)
C12—C7—C13—N1−153.69 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C17—H17a···N20.992.242.950 (2)128
C14—H14···O1i0.952.283.192 (2)161
C18—H18a···O2ii0.992.523.223 (2)128

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5646).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). FACES, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem.44, 3852–3857. [PubMed]
  • Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem.45, 1173–1180. [PubMed]
  • Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography