PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2498.
Published online 2010 September 4. doi:  10.1107/S1600536810034690
PMCID: PMC2983128

1-[(4-Chloro­phen­yl)(phenyl­imino)­meth­yl]-7-meth­oxy-2-naphthol–1,4-diaza­bicyclo­[2.2.2]octane (2/1)

Abstract

In the crystal structure of the title cocrystal, 2C24H18ClNO2·C6H12N2, the 1,4-diaza­bicyclo­[2.2.2]octane mol­ecule is located on a twofold rotation axis and linked to the two triaryl­imine mol­ecules by O—H(...)N hydrogen bonds, forming a 2:1 aggregate. C—H(...)Cl inter­actions are also observed. In the triaryl­imine mol­ecule, the naphthalene ring system makes dihedral angles of 80.39 (6) and 82.35 (6)°, respectively, with the phenyl and benzene rings. The dihedral angle between these two latter rings is 87.09 (7)°.

Related literature

For our study of the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene and peri-aroyl­naphthalene compounds, see: Okamoto & Yonezawa (2009 [triangle]). For related structures, see: Hijikata et al. (2010 [triangle]); Mitsui, Nakaema, Noguchi & Yonezawa (2008 [triangle]); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008 [triangle]); Watanabe, Nakaema, Muto et al. (2010 [triangle]); Watanabe, Nakaema, Nishijima et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2498-scheme1.jpg

Experimental

Crystal data

  • C24H18ClNO2·0.5C6H12N2
  • M r = 443.93
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2498-efi3.jpg
  • a = 25.0027 (5) Å
  • b = 9.92298 (18) Å
  • c = 20.0052 (4) Å
  • β = 114.621 (1)°
  • V = 4512.07 (16) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 1.71 mm−1
  • T = 193 K
  • 0.60 × 0.50 × 0.40 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.381, T max = 0.548
  • 39753 measured reflections
  • 4125 independent reflections
  • 3831 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.097
  • S = 1.04
  • 4125 reflections
  • 295 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034690/is2593sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034690/is2593Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema, Muto et al., 2010).

The aroyl groups in these compounds are bonded almost perpendicularly to the naphthalene rings at the 1,8-positions but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Moreover, the X-ray crystal structural analyses of 1-(4-substituted benzoylated)naphthalenes, i.e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Okamoto & Yonezawa, 2008), 1-(4-nitrobenzoyl)-2,7-dimethoxynaphthalene (Watanabe, Nakaema, Nishijima et al., 2010) and methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010), have also revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. Contrarily, the benzene ring of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) is bonded to the naphthalene ring with nearly coplanar configuration in the opposite direction against the 2-hydroxy group. This crystal structure is stabilized by intramolecular hydrogen bond between 2-hydroxy group and the carbonyl group.

As a part of our continuous study on the molecular structures of this kind of homologous molecules, we have investigated imination of aroylated naphthalene derivatives. Triarylimine has been clarified to be synthesized effectively by imination with the aid of TiCl4 and 1,4-diazabicyclo[2.2.2]octane (DABCO). The cocrystal of triarylimines and DABCO (2/1) was prepared directly from the reaction mixture.

An ORTEPIII (Burnett & Johnson, 1996) plot of the title cocrystal is shown in Fig. 1. In the crystal packing, one DABCO molecule is connected to two triarylimine molecules with two O—H···N hydrogen bonds (Fig. 2). The 2:1 comolecular unit of triarylimines and DABCO have twofold rotation symmetry, with the central DABCO molecule lying on the rotation axis. In triarylimine of the comolecular unit, the interplanar angles of phenyl ring (C18–C23) attached to nitrogen atom (N1) and benzene ring (C12–C17) attached to carbon atom (C11) against the naphthalene ring (C1–C10) are 80.39 (6) and 82.35 (6)°, respectively. Furthermore, the interplanar angle between the phenyl and benzene rings is 87.09 (7)°.

The molecular packing is mainly stabilized by intermolecular hydrogen bonds and van der Waals interactions. Triarylimine and DABCO are linked with intermolecular O—H···N hydrogen bond [O1—H1···N2 = 1.86 (2) Å]. The 2:1 comolecular units are aligned along the a axis (Fig. 3). The C—H···π interaction between the methylene hydrogen atom of DABCO molecule and the naphthalene ring is observed along the c axis [C5···H25A = 2.69 Å]. Furthermore, the hydrogen bond between the chlorine atom and the hydrogen atom of the phenyl ring (C18–C23) is observed along the b axis [Cl1···H20 = 2.78 Å].

Experimental

To a solution of 1-(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene (0.2 mmol, 62.8 mg) in chlorobenzene (1 ml), a mixture of aniline (0.22 mmol, 20.5 mg), TiCl4 (0.33 mmol, 62.4 mg), DABCO (1.32 mmol, 148.0 mg) and chlorobenzene (1 ml) was added by portions at 363 K under nitrogen atmosphere. After the reaction mixture was stirred at 398 K for 1.5 h, the resulting solution was filtrated to remove the precipitate. The solvent was removed under reduced pressure to give crude material. The crude material thus obtained was subjected to crystallization from CHCl3/n-hexane to give the cocrystal of triarylimines and DABCO (2/1) as colorless block (m.p. 445.6–446.0 K, yield 19.5 mg, 22%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ; 10.13, (s, 1H), 7.66–7.60 (m, 4H), 7.44 (d, 2H), 7.00 (t, 2H), 6.95 (d, 1H), 6.86–6.76 (m, 4H), 6.52 (d, 1H), 3.64 (s, 3H), 3.29 (s, 6H); 13C NMR (75 MHz, DMSO-d6) 164.4, 158.2, 153.7, 151.0, 137.6, 135.7, 132.2, 130.3, 130.0, 129.7, 128.7, 128.2, 123.8, 122.9, 119.2, 115.1, 115.0, 114.9, 102.6, 55.1, 47.3; IR (KBr): 3407, 2937, 2592, 1625, 1585, 1509, 1227; HRMS (m/z): [M + H]+ calcd for C24H19ClNO2, 388.1110; found, 388.1104.

Refinement

All the H-atoms could be located in difference Fourier maps. The O—H hydrogen atom was freely refined: O1—H1 = 0.89 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the cocrystal of triarylimine and DABCO, showing 50% probability displacement ellipsoids [symmetry code: (i) 1 - x, y, 3/2 - z].
Fig. 2.
The 2:1 comolecular unit of triarylimines and DABCO [symmetry codes: (i) 1 - x, y, -z; (ii) 1 - x, -y, 1 - z; (iii) x, -y, -1/2 + z]. The intermolecular O—H···N hydrogen bond are shown as dashed lines.
Fig. 3.
A partial crystal packing diagram of the cocrystal of triarylimine and DABCO, viewed down the b axis. The intermolecular O—H···N hydrogen bond are shown as dashed lines.

Crystal data

C24H18ClNO2·0.5C6H12N2F(000) = 1864
Mr = 443.93Dx = 1.307 Mg m3
Monoclinic, C2/cMelting point = 445.6–446.0 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54187 Å
a = 25.0027 (5) ÅCell parameters from 33487 reflections
b = 9.92298 (18) Åθ = 3.6–68.2°
c = 20.0052 (4) ŵ = 1.71 mm1
β = 114.621 (1)°T = 193 K
V = 4512.07 (16) Å3Block, colorless
Z = 80.60 × 0.50 × 0.40 mm

Data collection

Rigaku R-AXIS RAPID diffractometer4125 independent reflections
Radiation source: rotating anode3831 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.9°
ω scansh = −30→30
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −11→11
Tmin = 0.381, Tmax = 0.548l = −24→24
39753 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.0539P)2 + 2.6288P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4125 reflectionsΔρmax = 0.44 e Å3
295 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00076 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.091242 (19)−0.01553 (5)0.13553 (2)0.06399 (16)
O10.39706 (5)0.09386 (10)0.35831 (6)0.0414 (3)
O20.27685 (5)−0.16378 (10)0.60663 (6)0.0454 (3)
N10.30621 (5)0.22752 (11)0.43787 (6)0.0334 (3)
N20.52801 (5)−0.05890 (12)0.70856 (6)0.0364 (3)
C10.35467 (5)0.01095 (12)0.43518 (7)0.0285 (3)
C20.39665 (6)−0.00014 (13)0.40731 (7)0.0320 (3)
C30.43819 (6)−0.10588 (14)0.43064 (8)0.0372 (3)
H30.4684−0.11020.41360.045*
C40.43495 (6)−0.20190 (14)0.47761 (8)0.0369 (3)
H40.4623−0.27430.49160.044*
C50.39191 (6)−0.19608 (13)0.50592 (7)0.0319 (3)
C60.38745 (6)−0.29572 (14)0.55401 (8)0.0381 (3)
H60.4123−0.37260.56500.046*
C70.34832 (7)−0.28366 (14)0.58474 (8)0.0393 (3)
H70.3458−0.35180.61670.047*
C80.31135 (6)−0.16910 (14)0.56896 (7)0.0345 (3)
C90.31213 (6)−0.07365 (13)0.51986 (7)0.0311 (3)
H90.28570.00040.50790.037*
C100.35246 (5)−0.08518 (12)0.48682 (7)0.0283 (3)
C110.30795 (5)0.11744 (13)0.40603 (7)0.0296 (3)
C120.25612 (5)0.08458 (13)0.33587 (7)0.0306 (3)
C130.23887 (6)−0.04876 (14)0.31739 (7)0.0347 (3)
H130.2624−0.11940.34740.042*
C140.18793 (6)−0.08022 (14)0.25584 (8)0.0370 (3)
H140.1758−0.17120.24420.044*
C150.15531 (6)0.02355 (15)0.21194 (7)0.0378 (3)
C160.17224 (6)0.15721 (15)0.22735 (8)0.0396 (3)
H160.14980.22710.19550.048*
C170.22236 (6)0.18705 (14)0.28987 (7)0.0350 (3)
H170.23390.27830.30160.042*
C180.35302 (6)0.26745 (13)0.50447 (7)0.0321 (3)
C190.41007 (6)0.28720 (13)0.51060 (8)0.0355 (3)
H190.41980.26370.47100.043*
C200.45241 (6)0.34079 (14)0.57415 (8)0.0396 (3)
H200.49100.35580.57750.048*
C210.43962 (7)0.37310 (15)0.63327 (8)0.0414 (3)
H210.46920.40940.67700.050*
C220.38341 (7)0.35180 (15)0.62785 (8)0.0423 (3)
H220.37440.37250.66840.051*
C230.34011 (6)0.30065 (14)0.56397 (8)0.0385 (3)
H230.30140.28800.56050.046*
C240.24275 (8)−0.04438 (17)0.59824 (10)0.0523 (4)
H24A0.2229−0.04830.63130.063*
H24B0.2133−0.03740.54730.063*
H24C0.26860.03450.61030.063*
C250.47037 (7)0.00787 (16)0.67146 (8)0.0437 (3)
H25A0.4462−0.04180.62590.052*
H25B0.47610.10080.65760.052*
C260.56208 (7)0.01255 (17)0.77789 (9)0.0462 (4)
H26A0.56790.10750.76730.055*
H26B0.6013−0.02990.80300.055*
C270.51789 (7)−0.19821 (15)0.72649 (9)0.0432 (3)
H27A0.5562−0.24340.75380.052*
H27B0.4962−0.24910.68050.052*
H10.4247 (9)0.075 (2)0.3425 (11)0.069 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0550 (3)0.0596 (3)0.0526 (3)0.00847 (19)−0.0022 (2)−0.00729 (19)
O10.0492 (6)0.0401 (5)0.0517 (6)0.0113 (4)0.0378 (5)0.0121 (4)
O20.0642 (7)0.0358 (5)0.0564 (6)0.0060 (5)0.0453 (6)0.0087 (5)
N10.0348 (6)0.0318 (6)0.0381 (6)0.0051 (4)0.0197 (5)0.0033 (5)
N20.0388 (6)0.0394 (6)0.0383 (6)0.0020 (5)0.0233 (5)0.0011 (5)
C10.0299 (6)0.0273 (6)0.0310 (6)0.0027 (5)0.0154 (5)0.0006 (5)
C20.0356 (7)0.0306 (7)0.0353 (7)0.0021 (5)0.0202 (6)0.0017 (5)
C30.0366 (7)0.0392 (8)0.0454 (7)0.0071 (6)0.0265 (6)0.0017 (6)
C40.0375 (7)0.0348 (7)0.0418 (7)0.0120 (6)0.0199 (6)0.0028 (6)
C50.0357 (6)0.0296 (7)0.0317 (6)0.0040 (5)0.0151 (5)0.0002 (5)
C60.0472 (8)0.0288 (7)0.0405 (7)0.0091 (6)0.0204 (6)0.0050 (5)
C70.0549 (8)0.0289 (7)0.0404 (7)0.0031 (6)0.0261 (7)0.0069 (6)
C80.0424 (7)0.0313 (7)0.0370 (7)−0.0009 (5)0.0236 (6)0.0002 (5)
C90.0341 (6)0.0284 (6)0.0351 (6)0.0029 (5)0.0187 (5)0.0014 (5)
C100.0295 (6)0.0273 (6)0.0294 (6)0.0003 (5)0.0135 (5)−0.0013 (5)
C110.0328 (6)0.0298 (6)0.0348 (6)0.0039 (5)0.0224 (5)0.0066 (5)
C120.0338 (6)0.0321 (7)0.0343 (6)0.0042 (5)0.0225 (5)0.0038 (5)
C130.0362 (7)0.0322 (7)0.0384 (7)0.0052 (5)0.0183 (6)0.0059 (5)
C140.0384 (7)0.0346 (7)0.0414 (7)0.0016 (6)0.0202 (6)−0.0007 (6)
C150.0362 (7)0.0478 (8)0.0324 (7)0.0070 (6)0.0173 (6)−0.0004 (6)
C160.0454 (8)0.0399 (8)0.0365 (7)0.0133 (6)0.0200 (6)0.0082 (6)
C170.0424 (7)0.0316 (7)0.0370 (7)0.0052 (5)0.0225 (6)0.0043 (5)
C180.0363 (7)0.0267 (6)0.0374 (7)0.0074 (5)0.0193 (5)0.0051 (5)
C190.0397 (7)0.0320 (7)0.0430 (7)0.0040 (5)0.0256 (6)0.0001 (5)
C200.0358 (7)0.0344 (7)0.0519 (8)0.0027 (6)0.0215 (6)−0.0014 (6)
C210.0455 (8)0.0357 (7)0.0412 (7)0.0047 (6)0.0160 (6)−0.0004 (6)
C220.0547 (9)0.0394 (8)0.0413 (7)0.0054 (6)0.0286 (7)0.0003 (6)
C230.0393 (7)0.0385 (8)0.0463 (8)0.0057 (6)0.0263 (6)0.0024 (6)
C240.0678 (10)0.0459 (9)0.0680 (10)0.0119 (8)0.0528 (9)0.0094 (8)
C250.0489 (8)0.0494 (9)0.0387 (7)0.0110 (7)0.0240 (7)0.0070 (6)
C260.0420 (8)0.0565 (10)0.0474 (8)−0.0107 (7)0.0259 (7)−0.0084 (7)
C270.0516 (8)0.0380 (8)0.0494 (8)0.0043 (6)0.0305 (7)0.0005 (6)

Geometric parameters (Å, °)

Cl1—C151.7357 (15)C13—H130.9500
O1—C21.3563 (16)C14—C151.378 (2)
O1—H10.89 (2)C14—H140.9500
O2—C81.3623 (15)C15—C161.387 (2)
O2—C241.4282 (18)C16—C171.384 (2)
N1—C111.2744 (17)C16—H160.9500
N1—C181.4150 (17)C17—H170.9500
N2—C261.4723 (19)C18—C191.3937 (19)
N2—C251.4749 (18)C18—C231.3964 (18)
N2—C271.4762 (19)C19—C201.378 (2)
C1—C21.3828 (17)C19—H190.9500
C1—C101.4241 (17)C20—C211.385 (2)
C1—C111.5012 (17)C20—H200.9500
C2—C31.4119 (19)C21—C221.380 (2)
C3—C41.364 (2)C21—H210.9500
C3—H30.9500C22—C231.382 (2)
C4—C51.4106 (18)C22—H220.9500
C4—H40.9500C23—H230.9500
C5—C61.4159 (19)C24—H24A0.9800
C5—C101.4198 (17)C24—H24B0.9800
C6—C71.360 (2)C24—H24C0.9800
C6—H60.9500C25—C26i1.540 (2)
C7—C81.4154 (19)C25—H25A0.9900
C7—H70.9500C25—H25B0.9900
C8—C91.3706 (18)C26—C25i1.540 (2)
C9—C101.4221 (17)C26—H26A0.9900
C9—H90.9500C26—H26B0.9900
C11—C121.4966 (18)C27—C27i1.545 (3)
C12—C131.3931 (19)C27—H27A0.9900
C12—C171.3949 (18)C27—H27B0.9900
C13—C141.3890 (19)
C2—O1—H1110.6 (13)C16—C15—Cl1119.57 (11)
C8—O2—C24116.85 (10)C17—C16—C15118.87 (13)
C11—N1—C18121.58 (11)C17—C16—H16120.6
C26—N2—C25108.56 (12)C15—C16—H16120.6
C26—N2—C27108.21 (12)C16—C17—C12120.75 (13)
C25—N2—C27108.21 (11)C16—C17—H17119.6
C2—C1—C10120.30 (11)C12—C17—H17119.6
C2—C1—C11119.87 (11)C19—C18—C23118.91 (13)
C10—C1—C11119.62 (10)C19—C18—N1122.47 (11)
O1—C2—C1118.17 (11)C23—C18—N1118.32 (11)
O1—C2—C3121.60 (11)C20—C19—C18120.01 (12)
C1—C2—C3120.22 (12)C20—C19—H19120.0
C4—C3—C2120.00 (12)C18—C19—H19120.0
C4—C3—H3120.0C19—C20—C21121.01 (13)
C2—C3—H3120.0C19—C20—H20119.5
C3—C4—C5121.48 (12)C21—C20—H20119.5
C3—C4—H4119.3C22—C21—C20119.17 (14)
C5—C4—H4119.3C22—C21—H21120.4
C4—C5—C6122.23 (12)C20—C21—H21120.4
C4—C5—C10118.96 (12)C21—C22—C23120.57 (13)
C6—C5—C10118.79 (12)C21—C22—H22119.7
C7—C6—C5121.37 (12)C23—C22—H22119.7
C7—C6—H6119.3C22—C23—C18120.31 (13)
C5—C6—H6119.3C22—C23—H23119.8
C6—C7—C8119.72 (12)C18—C23—H23119.8
C6—C7—H7120.1O2—C24—H24A109.5
C8—C7—H7120.1O2—C24—H24B109.5
O2—C8—C9124.82 (12)H24A—C24—H24B109.5
O2—C8—C7114.39 (11)O2—C24—H24C109.5
C9—C8—C7120.79 (12)H24A—C24—H24C109.5
C8—C9—C10120.14 (12)H24B—C24—H24C109.5
C8—C9—H9119.9N2—C25—C26i110.77 (12)
C10—C9—H9119.9N2—C25—H25A109.5
C5—C10—C9119.01 (11)C26i—C25—H25A109.5
C5—C10—C1118.81 (11)N2—C25—H25B109.5
C9—C10—C1122.18 (11)C26i—C25—H25B109.5
N1—C11—C12117.33 (11)H25A—C25—H25B108.1
N1—C11—C1126.31 (12)N2—C26—C25i110.40 (11)
C12—C11—C1116.14 (11)N2—C26—H26A109.6
C13—C12—C17118.81 (12)C25i—C26—H26A109.6
C13—C12—C11120.47 (11)N2—C26—H26B109.6
C17—C12—C11120.62 (12)C25i—C26—H26B109.6
C14—C13—C12121.12 (13)H26A—C26—H26B108.1
C14—C13—H13119.4N2—C27—C27i110.45 (7)
C12—C13—H13119.4N2—C27—H27A109.6
C15—C14—C13118.53 (13)C27i—C27—H27A109.6
C15—C14—H14120.7N2—C27—H27B109.6
C13—C14—H14120.7C27i—C27—H27B109.6
C14—C15—C16121.86 (13)H27A—C27—H27B108.1
C14—C15—Cl1118.57 (12)
C10—C1—C2—O1−179.95 (12)C2—C1—C11—C1281.97 (15)
C11—C1—C2—O15.43 (19)C10—C1—C11—C12−92.69 (13)
C10—C1—C2—C3−0.9 (2)N1—C11—C12—C13−147.08 (12)
C11—C1—C2—C3−175.50 (12)C1—C11—C12—C1327.86 (16)
O1—C2—C3—C4−177.23 (13)N1—C11—C12—C1729.38 (16)
C1—C2—C3—C43.7 (2)C1—C11—C12—C17−155.68 (11)
C2—C3—C4—C5−2.2 (2)C17—C12—C13—C14−2.25 (18)
C3—C4—C5—C6179.21 (14)C11—C12—C13—C14174.28 (11)
C3—C4—C5—C10−2.1 (2)C12—C13—C14—C151.67 (19)
C4—C5—C6—C7175.43 (14)C13—C14—C15—C160.5 (2)
C10—C5—C6—C7−3.2 (2)C13—C14—C15—Cl1−179.35 (10)
C5—C6—C7—C8−0.4 (2)C14—C15—C16—C17−2.0 (2)
C24—O2—C8—C9−5.2 (2)Cl1—C15—C16—C17177.82 (10)
C24—O2—C8—C7174.25 (14)C15—C16—C17—C121.4 (2)
C6—C7—C8—O2−175.83 (13)C13—C12—C17—C160.67 (18)
C6—C7—C8—C93.7 (2)C11—C12—C17—C16−175.85 (11)
O2—C8—C9—C10176.23 (12)C11—N1—C18—C1959.63 (17)
C7—C8—C9—C10−3.2 (2)C11—N1—C18—C23−126.69 (13)
C4—C5—C10—C9−175.10 (12)C23—C18—C19—C20−1.1 (2)
C6—C5—C10—C93.62 (18)N1—C18—C19—C20172.57 (12)
C4—C5—C10—C14.86 (18)C18—C19—C20—C211.4 (2)
C6—C5—C10—C1−176.42 (12)C19—C20—C21—C22−0.4 (2)
C8—C9—C10—C5−0.45 (19)C20—C21—C22—C23−0.9 (2)
C8—C9—C10—C1179.60 (12)C21—C22—C23—C181.2 (2)
C2—C1—C10—C5−3.40 (18)C19—C18—C23—C22−0.2 (2)
C11—C1—C10—C5171.24 (11)N1—C18—C23—C22−174.12 (12)
C2—C1—C10—C9176.56 (12)C26—N2—C25—C26i−56.40 (14)
C11—C1—C10—C9−8.81 (18)C27—N2—C25—C26i60.82 (16)
C18—N1—C11—C12179.94 (11)C25—N2—C26—C25i60.43 (14)
C18—N1—C11—C15.59 (18)C27—N2—C26—C25i−56.79 (16)
C2—C1—C11—N1−103.62 (15)C26—N2—C27—C27i61.24 (19)
C10—C1—C11—N181.72 (16)C25—N2—C27—C27i−56.21 (19)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N2ii0.89 (2)1.86 (2)2.7401 (18)167.2 (18)
C20—H20···Cl1iii0.952.783.6071 (17)146

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2593).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [PMC free article] [PubMed]
  • Okamoto, A. & Yonezawa, N. (2009). Chem. Lett.38, 914–915.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403. [PMC free article] [PubMed]
  • Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography