PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1306–m1307.
Published online 2010 September 30. doi:  10.1107/S1600536810037633
PMCID: PMC2983125

Bis[2-(1H-benzimidazol-2-yl)benzoato]copper(II) dihydrate

Abstract

In the title compound, [Cu(C14H9N2O2)2]·2H2O, the Cu(II) ion lies on a centre of symmetry and is four-coordinated by two N atoms and two O atoms from two 2-(1H-benzimidazol-2-yl)benzoate ligands in a square-planar environment. The benzimidazol and benzyl rings form a dihedral angle of 42.8 (5)°. The mol­ecule contains two H-bonded carboxyl O acceptors and two H-bonded N—H donors in the benzimidazol groups, which inter­act with two symmetry-related uncoordinated water mol­ecules so that neighboring mol­ecular units are linked by (O—H)water(...)Ocarbox­yl hydrogen bonds with an R 2 4(8) graph-set motif, generating a helical chain in the a-axis direction. These chains are, in turn, inter­connected by (N—H)benzimidazol(...)Owater hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For the structural diversity and potential applications in functional materials of metal coordination polymers based on benzimidazole derivatives, see: Aminabhavi et al. (1986 [triangle]); Isele et al. (2005 [triangle]). For similar structures, see: Che et al. (2006 [triangle]); Fang et al. (2006 [triangle]); Liu et al. (2004 [triangle]); Li et al. (2010 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1306-scheme1.jpg

Experimental

Crystal data

  • [Cu(C14H9N2O2)2]·2H2O
  • M r = 574.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1306-efi1.jpg
  • a = 11.6235 (2) Å
  • b = 7.6920 (2) Å
  • c = 16.1410 (3) Å
  • β = 115.735 (1)°
  • V = 1299.99 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 296 K
  • 0.23 × 0.21 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.821, T max = 0.871
  • 14480 measured reflections
  • 2974 independent reflections
  • 1854 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.110
  • S = 1.00
  • 2974 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037633/bg2369sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037633/bg2369Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Zhongshan Polytechnic.

supplementary crystallographic information

Comment

Metal coordination polymers based on benzimidazole derivatives have raised intense interest for their structural diversity and their potential applications in functional materials (Aminabhavi et al., 1986; Isele et al., 2005). To date, numerous one-, two-, and three-dimensional coordination polymers have been synthesized by the choice of appropriate metal ions and versatile benzimidazole derivatives as ligands (Che et al., 2006; Fang et al., 2006; Liu et al., 2004; Li et al., 2010). Herein, the condensation of 1,2-diaminobenzene with 2-formylbenzoic acid in the presence of copper acetate lead to a new structure, Cu(C14H9N2O2)2.2H2O, the title compound herein reported .

As depicted in Fig. 1, the CuII ion lies on a centre of symmetry and is four-coordinated by two N atoms and two O atoms from two 2-(1H-Benzimidazol-2-yl)benzoate ligands in a square planar environment. The planar benzimidazol and benzyl rings form a dihedral angle of 42.8 (5)°. The molecule contains two H-bonded carboxyl O acceptors and two H-bonded N—H donors in the benzimidazol groups which interact with two symmetry-related lattice water molecules (symmetry code: 2 - X, 2 - Y, 2 - Z) in a way that neighboring molecular units are linked by (O—H)water···Ocarbox hydrogen bonding with an R24(8) graph set motif (Bernstein et al., 1995) to generate a helical chain in the a-axis direction. These chains are in turn interconnected by (N—H)benzimidazol···Owater hydrogen bonds and extend to form a three-dimensional supramolecular network (table 1; Fig. 2)

Experimental

The condensation reaction was done by reflux of 1,2-diaminobenzene (1.081 g; 10 mmol), 2-formylbenzoic acid (1.501 g; 10 mmol) and copper acetate (1.99 g; 10 mmol) in a hot 75% methanol/water (3:1; v/v) mixture (50 mL). Blue block crystals of the compound suitable for single-crystal X-ray diffraction analysis were obtained at room temperature by slow evaporation of the solvent (Yield 56% based on Cu).

Refinement

All water H atoms were tentatively located in difference density Fourier maps and were refined with O–H distance restraints of 0.83 (1) Å and with Uiso(H) = 1.5 Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
ORTEP represention of atom numbering diagram for (I), showing 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the symmetry operator (i): 1-x, 1-y, 1-z.
Fig. 2.
View of the three-dimensional structure of the title compound.

Crystal data

[Cu(C14H9N2O2)2]·2H2OF(000) = 590
Mr = 574.04Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4800 reflections
a = 11.6235 (2) Åθ = 1.4–28.0°
b = 7.6920 (2) ŵ = 0.89 mm1
c = 16.1410 (3) ÅT = 296 K
β = 115.735 (1)°Block, blue
V = 1299.99 (5) Å30.23 × 0.21 × 0.16 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2974 independent reflections
Radiation source: fine-focus sealed tube1854 reflections with I > 2σ(I)
graphiteRint = 0.063
[var phi] and ω scanθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)h = −15→14
Tmin = 0.821, Tmax = 0.871k = −9→9
14480 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0379P)2 + 0.7646P] where P = (Fo2 + 2Fc2)/3
2974 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.03258 (17)
C10.5169 (3)0.8319 (4)0.6049 (2)0.0354 (7)
C20.4078 (3)0.9168 (4)0.5430 (2)0.0439 (8)
H20.35190.86480.48830.053*
C30.3861 (4)1.0813 (5)0.5665 (3)0.0511 (9)
H30.31391.14140.52650.061*
C40.4686 (4)1.1600 (5)0.6478 (3)0.0582 (10)
H40.45081.27210.66050.070*
C50.5758 (4)1.0775 (5)0.7099 (3)0.0535 (10)
H50.63021.13010.76490.064*
C60.5994 (3)0.9111 (4)0.6870 (2)0.0400 (8)
C70.6757 (3)0.6520 (4)0.6772 (2)0.0332 (7)
C80.7588 (3)0.4981 (4)0.7070 (2)0.0358 (7)
C90.8024 (3)0.4489 (5)0.7992 (2)0.0504 (9)
H90.77790.51260.83780.060*
C100.8814 (4)0.3068 (5)0.8332 (3)0.0632 (11)
H100.90960.27500.89450.076*
C110.9187 (3)0.2119 (5)0.7768 (3)0.0604 (11)
H110.97000.11410.79940.072*
C120.8798 (3)0.2620 (4)0.6868 (2)0.0502 (9)
H120.90750.19950.64950.060*
C130.7996 (3)0.4051 (4)0.6504 (2)0.0367 (7)
C140.7735 (3)0.4580 (4)0.5535 (2)0.0386 (8)
N10.5679 (2)0.6681 (3)0.60034 (16)0.0327 (6)
N20.6971 (2)0.7946 (3)0.73035 (17)0.0413 (7)
H2A0.76140.81030.78280.050*
O10.66231 (18)0.4956 (3)0.49508 (13)0.0392 (5)
O20.8661 (2)0.4584 (4)0.53508 (16)0.0636 (8)
O1W0.8855 (2)0.8417 (3)0.90275 (15)0.0624 (7)
H1W0.86800.89790.94060.094*
H2W0.96180.86570.91440.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0257 (3)0.0338 (3)0.0323 (3)0.0030 (3)0.0070 (2)−0.0034 (3)
C10.0397 (19)0.0320 (17)0.0387 (18)−0.0002 (14)0.0210 (15)−0.0016 (15)
C20.042 (2)0.0385 (19)0.049 (2)0.0043 (16)0.0178 (17)0.0018 (17)
C30.054 (2)0.041 (2)0.066 (3)0.0104 (19)0.034 (2)0.0083 (19)
C40.074 (3)0.033 (2)0.087 (3)0.0080 (19)0.053 (3)−0.003 (2)
C50.064 (3)0.042 (2)0.061 (2)−0.0088 (19)0.032 (2)−0.0177 (19)
C60.042 (2)0.0360 (18)0.046 (2)−0.0016 (16)0.0223 (17)−0.0025 (16)
C70.0321 (17)0.0363 (18)0.0308 (16)−0.0041 (14)0.0132 (14)−0.0034 (14)
C80.0265 (15)0.0371 (16)0.0371 (17)−0.0048 (16)0.0076 (13)0.0013 (16)
C90.050 (2)0.056 (2)0.041 (2)0.0050 (17)0.0153 (17)0.0057 (16)
C100.059 (3)0.073 (3)0.047 (2)0.009 (2)0.014 (2)0.022 (2)
C110.051 (2)0.059 (2)0.066 (3)0.023 (2)0.021 (2)0.029 (2)
C120.043 (2)0.051 (2)0.058 (2)0.0089 (17)0.0228 (18)0.0113 (18)
C130.0288 (17)0.0374 (18)0.0396 (18)0.0014 (14)0.0109 (14)0.0048 (15)
C140.0335 (19)0.038 (2)0.0420 (19)0.0006 (14)0.0142 (16)0.0020 (14)
N10.0292 (14)0.0314 (14)0.0326 (14)0.0024 (11)0.0089 (11)−0.0040 (11)
N20.0385 (16)0.0449 (17)0.0335 (14)−0.0063 (13)0.0090 (12)−0.0094 (13)
O10.0296 (12)0.0483 (13)0.0362 (12)0.0045 (11)0.0111 (9)0.0010 (11)
O20.0334 (14)0.109 (2)0.0530 (15)0.0133 (14)0.0232 (12)0.0240 (14)
O1W0.0453 (15)0.0879 (19)0.0496 (15)−0.0167 (14)0.0165 (12)−0.0258 (14)

Geometric parameters (Å, °)

Cu1—O1i1.9227 (19)C7—C81.470 (4)
Cu1—O11.9227 (19)C8—C131.396 (4)
Cu1—N11.951 (2)C8—C91.400 (4)
Cu1—N1i1.951 (2)C9—C101.379 (5)
C1—C21.390 (4)C9—H90.9300
C1—C61.395 (4)C10—C111.376 (5)
C1—N11.407 (4)C10—H100.9300
C2—C31.374 (5)C11—C121.376 (5)
C2—H20.9300C11—H110.9300
C3—C41.384 (5)C12—C131.396 (4)
C3—H30.9300C12—H120.9300
C4—C51.370 (5)C13—C141.513 (4)
C4—H40.9300C14—O21.235 (4)
C5—C61.392 (5)C14—O11.259 (3)
C5—H50.9300N2—H2A0.8600
C6—N21.376 (4)O1W—H1W0.8415
C7—N11.333 (3)O1W—H2W0.8432
C7—N21.347 (3)
O1i—Cu1—O1180.0C13—C8—C7124.1 (3)
O1i—Cu1—N190.25 (9)C9—C8—C7116.6 (3)
O1—Cu1—N189.75 (9)C10—C9—C8120.6 (3)
O1i—Cu1—N1i89.75 (9)C10—C9—H9119.7
O1—Cu1—N1i90.25 (9)C8—C9—H9119.7
N1—Cu1—N1i180.0C11—C10—C9120.2 (3)
C2—C1—C6120.9 (3)C11—C10—H10119.9
C2—C1—N1131.1 (3)C9—C10—H10119.9
C6—C1—N1108.0 (3)C12—C11—C10119.8 (3)
C3—C2—C1117.0 (3)C12—C11—H11120.1
C3—C2—H2121.5C10—C11—H11120.1
C1—C2—H2121.5C11—C12—C13121.3 (3)
C2—C3—C4122.0 (3)C11—C12—H12119.4
C2—C3—H3119.0C13—C12—H12119.4
C4—C3—H3119.0C8—C13—C12118.9 (3)
C5—C4—C3121.8 (3)C8—C13—C14124.4 (3)
C5—C4—H4119.1C12—C13—C14116.4 (3)
C3—C4—H4119.1O2—C14—O1122.5 (3)
C4—C5—C6116.9 (3)O2—C14—C13116.4 (3)
C4—C5—H5121.5O1—C14—C13121.1 (3)
C6—C5—H5121.5C7—N1—C1106.4 (2)
N2—C6—C5132.7 (3)C7—N1—Cu1126.1 (2)
N2—C6—C1105.9 (3)C1—N1—Cu1127.5 (2)
C5—C6—C1121.4 (3)C7—N2—C6108.8 (3)
N1—C7—N2110.9 (3)C7—N2—H2A125.6
N1—C7—C8126.7 (3)C6—N2—H2A125.6
N2—C7—C8122.3 (3)C14—O1—Cu1132.8 (2)
C13—C8—C9119.2 (3)H1W—O1W—H2W106.7

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1W0.861.862.716 (3)173
O1W—H1W···O2ii0.841.892.720 (3)167
O1W—H2W···O2iii0.841.942.763 (3)165

Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2369).

References

  • Aminabhavi, T. M., Biradar, N. S., Patil, S. B. & Hoffman, D. E. (1986). Inorg. Chim. Acta, 125, 125–128.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Che, G.-B., Sun, J., Liu, C.-B. & Xu, Z.-L. (2006). Acta Cryst. E62, m3101–m3103.
  • Fang, X.-N., Xiao, Y.-A., Sui, Y., Chen, H.-M. & Zuo, C.-P. (2006). Acta Cryst. E62, m2519–m2521.
  • Isele, K., Franz, P., Ambrus, C., Bernardinelli, G., Decurtins, S. & Williams, A. F. (2005). Inorg. Chem.44, 3896–3906. [PubMed]
  • Li, S. L., Lan, Y. Q., Ma, J. C., Ma, J. F. & Su, Z. M. (2010). Cryst. Growth Des.10, 1161–1170.
  • Liu, F. C., Duan, L. Y., Li, Y. G., Wang, E. B., Wang, X. L., Hu, C. W. & Xu, L. (2004). Inorg. Chim. Acta, 357, 1355–1359.
  • Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography