PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2641.
Published online 2010 September 25. doi:  10.1107/S160053681003789X
PMCID: PMC2983123

2,5-Dichloro-N-cyclo­hexyl­benzene­sulfonamide

Abstract

The structure of the title sulfonamide, C12H15Cl2NO2S, features a distorted tetra­hedral geometry for the S atom [maximum deviation: O—S—O = 120.23 (14)°]. One of the sulfonamide O atoms is coplanar with the benzene ring [C—C—S—O torsion angle = −174.5 (2)°], whereas the other lies well above the plane [C—C—S—O = 57.0 (3)°]. A chair conformation is found for the cyclo­hexyl ring. In the crystal, supra­molecular chains aligned along the c axis are formed via N—H(...)O hydrogen bonds; these are consolidated in the three-dimensional packing by C—H(...)O contacts involving the second sulfonamide O atom.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988 [triangle]); Mandell & Sande (1992 [triangle]). For related structures, see: Khan et al. (2010 [triangle]); Sharif et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2641-scheme1.jpg

Experimental

Crystal data

  • C12H15Cl2NO2S
  • M r = 308.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2641-efi1.jpg
  • a = 17.4471 (12) Å
  • b = 10.7574 (8) Å
  • c = 8.2845 (6) Å
  • β = 111.956 (4)°
  • V = 1442.11 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 293 K
  • 0.28 × 0.14 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.692, T max = 0.895
  • 6491 measured reflections
  • 2983 independent reflections
  • 2492 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.092
  • S = 1.01
  • 2983 reflections
  • 166 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1327 Friedel pairs
  • Flack parameter: 0.06 (7)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003789X/hg2717sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003789X/hg2717Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992). In continuation of on-going structural studies of sulfonamide derivatives (Khan et al., 2010, Sharif et al., 2010), the crystal structure of title sulfonamide, (I), is described herein.

In (I), the S atom is tetrahedrally coordinated within a CNO2 donor set with the greatest deviation manifested in the O1—S1—O2 angle of 120.23 (14) °. Whereas the sulfonamide-O1 atom is co-planar with the benzene ring [the O1—S1—C1—C2 torsion angle = -174.5 (2) °], the O2 atom lies well above the plane [O2—S1—C1—C2 = 57.0 (3) °]. The amide-H lies to the same side of the molecule as does the ortho-substituted Cl atom and approaches this atom at 2.85 (3) Å. The cyclohexyl ring adopts a chair conformation.

The presence of N1—H···O2 hydrogen bonding, Table 1, leads to the formation of supramolecular chains along the c axis, Fig. 2. Chains are consolidated in the 3-D packing by C4—H···O1 interactions, Fig. 3 and Table 1.

Experimental

To 2,5-dichlorobenzenesulfonyl chloride (491 mg, 2 mmol) in 10 ml distilled water, was added cyclohexylamine (229 µl, 2 mmol) with stirring at room temperature while maintaining the pH of reaction mixture at 8 by using 3% sodium carbonate solution. The progress of reaction was monitored by TLC. After consumption of reactants, the precipitates were filtered, dried and crystallized from methanol

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. (110) and (110).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular chain formation along c in (I) mediated by N—H···O hydrogen bonding (orange dashed lines).
Fig. 3.
Unit-cell contents shown in projection down the c axis in (I). N—H···O hydrogen bonds (orange dashed lines) down the c axis are largely obscured. The C–H···O contacts are shown as blue dashed ...

Crystal data

C12H15Cl2NO2SF(000) = 640
Mr = 308.21Dx = 1.420 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2154 reflections
a = 17.4471 (12) Åθ = 2.3–25.8°
b = 10.7574 (8) ŵ = 0.59 mm1
c = 8.2845 (6) ÅT = 293 K
β = 111.956 (4)°Block, colourless
V = 1442.11 (18) Å30.28 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2983 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→22
Tmin = 0.692, Tmax = 0.895k = −13→10
6491 measured reflectionsl = −10→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092w = 1/[σ2(Fo2) + (0.0499P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2983 reflectionsΔρmax = 0.24 e Å3
166 parametersΔρmin = −0.19 e Å3
3 restraintsAbsolute structure: Flack (1983), 1327 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (7)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.74062 (5)0.95016 (10)0.40157 (10)0.0731 (3)
Cl20.71411 (6)0.53058 (11)0.89049 (15)0.0905 (4)
S10.90528 (4)0.86294 (6)0.72894 (8)0.04118 (17)
O10.96062 (11)0.7885 (2)0.8655 (3)0.0571 (6)
O20.89603 (14)0.99251 (19)0.7564 (3)0.0608 (6)
N10.93057 (15)0.8530 (2)0.5645 (3)0.0457 (6)
H1n0.9127 (18)0.912 (2)0.486 (3)0.055*
C10.80608 (14)0.7947 (2)0.6796 (3)0.0373 (6)
C20.73570 (17)0.8342 (3)0.5422 (4)0.0448 (7)
C30.66045 (17)0.7810 (3)0.5144 (4)0.0540 (8)
H30.61370.80890.42320.065*
C40.65355 (18)0.6871 (3)0.6199 (4)0.0533 (7)
H40.60270.64990.59950.064*
C50.72223 (19)0.6489 (3)0.7549 (4)0.0510 (7)
C60.79885 (17)0.7007 (3)0.7871 (3)0.0436 (6)
H60.84500.67290.87980.052*
C70.96379 (16)0.7403 (2)0.5145 (4)0.0392 (6)
H70.97510.67930.60850.047*
C80.90286 (18)0.6836 (3)0.3500 (4)0.0550 (8)
H8A0.88740.74500.25750.066*
H8B0.85330.65930.36890.066*
C90.9399 (2)0.5697 (3)0.2951 (5)0.0608 (9)
H9A0.94990.50500.38210.073*
H9B0.90080.53790.18580.073*
C101.0206 (2)0.6020 (3)0.2741 (4)0.0624 (9)
H10A1.04420.52740.24570.075*
H10B1.00990.66050.17910.075*
C111.0810 (2)0.6580 (3)0.4394 (4)0.0564 (8)
H11A1.13080.68230.42160.068*
H11B1.09610.59610.53130.068*
C121.04439 (17)0.7717 (3)0.4958 (4)0.0471 (7)
H12A1.08340.80220.60610.056*
H12B1.03520.83720.41010.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0545 (5)0.0915 (7)0.0708 (6)0.0203 (4)0.0206 (4)0.0393 (5)
Cl20.0742 (6)0.0882 (7)0.1198 (9)0.0010 (5)0.0486 (6)0.0425 (6)
S10.0346 (3)0.0513 (4)0.0368 (3)−0.0019 (3)0.0124 (2)−0.0063 (3)
O10.0349 (10)0.0900 (16)0.0400 (11)−0.0033 (10)0.0066 (9)0.0081 (10)
O20.0674 (14)0.0549 (12)0.0639 (14)−0.0091 (11)0.0290 (11)−0.0221 (11)
N10.0516 (14)0.0457 (14)0.0473 (14)0.0123 (10)0.0273 (12)0.0108 (10)
C10.0318 (12)0.0465 (15)0.0337 (13)0.0026 (11)0.0122 (10)−0.0074 (11)
C20.0385 (14)0.0551 (17)0.0391 (15)0.0093 (12)0.0127 (12)0.0014 (13)
C30.0327 (13)0.076 (2)0.0446 (18)0.0084 (15)0.0045 (13)−0.0017 (15)
C40.0370 (15)0.0645 (19)0.0588 (18)−0.0071 (14)0.0183 (14)−0.0115 (16)
C50.0482 (17)0.0492 (18)0.0612 (18)0.0026 (13)0.0267 (15)0.0045 (15)
C60.0366 (14)0.0536 (17)0.0415 (15)0.0052 (12)0.0155 (12)0.0037 (13)
C70.0409 (13)0.0369 (14)0.0438 (15)0.0050 (11)0.0204 (12)0.0045 (11)
C80.0445 (16)0.0543 (18)0.0625 (19)−0.0063 (13)0.0159 (14)−0.0042 (15)
C90.070 (2)0.0468 (18)0.0565 (19)−0.0033 (15)0.0132 (17)−0.0089 (14)
C100.084 (2)0.0563 (18)0.0522 (19)0.0169 (17)0.0323 (18)−0.0001 (15)
C110.0528 (17)0.066 (2)0.061 (2)0.0148 (15)0.0330 (16)0.0026 (16)
C120.0381 (14)0.0541 (17)0.0512 (16)0.0005 (12)0.0192 (13)−0.0029 (13)

Geometric parameters (Å, °)

Cl1—C21.731 (3)C7—C81.508 (4)
Cl2—C51.738 (3)C7—C121.510 (4)
S1—O11.427 (2)C7—H70.9800
S1—O21.431 (2)C8—C91.532 (5)
S1—N11.585 (2)C8—H8A0.9700
S1—C11.781 (3)C8—H8B0.9700
N1—C71.469 (3)C9—C101.521 (5)
N1—H1n0.88 (2)C9—H9A0.9700
C1—C61.384 (4)C9—H9B0.9700
C1—C21.392 (3)C10—C111.507 (5)
C2—C31.370 (4)C10—H10A0.9700
C3—C41.371 (5)C10—H10B0.9700
C3—H30.9300C11—C121.531 (4)
C4—C51.362 (4)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.379 (4)C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
O1—S1—O2120.23 (14)C12—C7—H7108.2
O1—S1—N1108.69 (13)C7—C8—C9111.0 (2)
O2—S1—N1106.64 (13)C7—C8—H8A109.4
O1—S1—C1105.20 (13)C9—C8—H8A109.4
O2—S1—C1106.27 (13)C7—C8—H8B109.4
N1—S1—C1109.51 (13)C9—C8—H8B109.4
C7—N1—S1124.32 (19)H8A—C8—H8B108.0
C7—N1—H1N117 (2)C10—C9—C8111.3 (3)
S1—N1—H1N117 (2)C10—C9—H9A109.4
C6—C1—C2119.0 (2)C8—C9—H9A109.4
C6—C1—S1117.89 (19)C10—C9—H9B109.4
C2—C1—S1123.1 (2)C8—C9—H9B109.4
C3—C2—C1120.4 (3)H9A—C9—H9B108.0
C3—C2—Cl1118.2 (2)C11—C10—C9110.5 (3)
C1—C2—Cl1121.3 (2)C11—C10—H10A109.6
C2—C3—C4120.5 (3)C9—C10—H10A109.6
C2—C3—H3119.7C11—C10—H10B109.6
C4—C3—H3119.7C9—C10—H10B109.6
C5—C4—C3119.1 (3)H10A—C10—H10B108.1
C5—C4—H4120.4C10—C11—C12111.5 (3)
C3—C4—H4120.4C10—C11—H11A109.3
C4—C5—C6121.9 (3)C12—C11—H11A109.3
C4—C5—Cl2119.5 (2)C10—C11—H11B109.3
C6—C5—Cl2118.6 (2)C12—C11—H11B109.3
C5—C6—C1119.1 (3)H11A—C11—H11B108.0
C5—C6—H6120.5C7—C12—C11111.3 (3)
C1—C6—H6120.5C7—C12—H12A109.4
N1—C7—C8111.7 (2)C11—C12—H12A109.4
N1—C7—C12109.0 (2)C7—C12—H12B109.4
C8—C7—C12111.5 (2)C11—C12—H12B109.4
N1—C7—H7108.2H12A—C12—H12B108.0
C8—C7—H7108.2
O1—S1—N1—C734.9 (3)C3—C4—C5—C6−1.0 (5)
O2—S1—N1—C7165.9 (2)C3—C4—C5—Cl2179.6 (2)
C1—S1—N1—C7−79.5 (2)C4—C5—C6—C10.4 (4)
O1—S1—C1—C67.6 (2)Cl2—C5—C6—C1179.8 (2)
O2—S1—C1—C6−120.9 (2)C2—C1—C6—C50.1 (4)
N1—S1—C1—C6124.3 (2)S1—C1—C6—C5178.1 (2)
O1—S1—C1—C2−174.5 (2)S1—N1—C7—C8110.4 (3)
O2—S1—C1—C257.0 (3)S1—N1—C7—C12−126.0 (2)
N1—S1—C1—C2−57.8 (2)N1—C7—C8—C9177.4 (3)
C6—C1—C2—C30.2 (4)C12—C7—C8—C955.2 (4)
S1—C1—C2—C3−177.7 (2)C7—C8—C9—C10−55.8 (4)
C6—C1—C2—Cl1−179.3 (2)C8—C9—C10—C1156.1 (4)
S1—C1—C2—Cl12.8 (3)C9—C10—C11—C12−55.8 (4)
C1—C2—C3—C4−0.9 (4)N1—C7—C12—C11−178.7 (2)
Cl1—C2—C3—C4178.6 (2)C8—C7—C12—C11−55.0 (3)
C2—C3—C4—C51.3 (5)C10—C11—C12—C755.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.88 (2)2.08 (2)2.914 (3)157 (2)
C4—H4···O1ii0.932.603.246 (4)127

Symmetry codes: (i) x, −y+2, z−1/2; (ii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2717).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088. [PMC free article] [PubMed]
  • Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.
  • Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.
  • Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography