PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m46–m47.
Published online 2009 December 12. doi:  10.1107/S1600536809052763
PMCID: PMC2980272

(Carbonato-κ2 O,O′)bis­(1,10-phenan­throline-κ2 N,N′)cobalt(III) nitrate monohydrate

Abstract

The crystal structure of the title compound, [Co(CO3)(C12H8N2)2]NO3·H2O, consists of CoIII complex cations, nitrate anions and uncoordinated water mol­ecules. The CoIII cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa­hedral coordination geometry. A three-dimensional supra­molecular structure is formed by O—H(...)O and C—H(...)O hydrogen bonding, C—H(...)π and aromatic π–π stacking [centroid–centroid distance = 3.995 (1)Å] inter­actions.

Related literature

For Co(III) complexes with carbonate and phen ligands, see: Fu et al. (2006 [triangle]); Guild et al. (1980 [triangle]); Hadadzadeh et al. (2007 [triangle]); Hennig et al. (1980 [triangle]); McAuliffe et al. (1992 [triangle]); Niederhoffer et al. (1982 [triangle]); Sharma et al. (2009 [triangle]). For a CoII coordination compound with carbonate and phen ligands, see: Li et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m46-scheme1.jpg

Experimental

Crystal data

  • [Co(CO3)(C12H8N2)2]NO3·H2O
  • M r = 559.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m46-efi1.jpg
  • a = 13.6986 (9) Å
  • b = 10.8583 (5) Å
  • c = 16.1494 (10) Å
  • β = 106.386 (5)°
  • V = 2304.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 296 K
  • 0.41 × 0.26 × 0.15 mm

Data collection

  • Stoe IPDS-2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.818, T max = 0.905
  • 21353 measured reflections
  • 5713 independent reflections
  • 4021 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.102
  • S = 1.02
  • 5713 reflections
  • 349 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052763/xu2707sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052763/xu2707Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the Research Foundation of Ondokuz Mayis University for financial support to this work under the Project number F474.

supplementary crystallographic information

Comment

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF. The combination of cobalt(II) cations, carbonate and phenantroline ligands often results in CoIII-containing products as a result of an autoxidation reaction. CCDC search revealed that several crystal structures of CoIII mixed ligand complexes of phenanthroline and carbonate ligands have been reported (Guild et al., 1980; Fu et al., 2006; Hadadzadeh et al., 2007; McAuliffe et al.,1992; Hennig et al., 1980; Niederhoffer et al., 1982; Sharma et al., 2009). CoII coordination compound with carbonate and phen ligand has also been reported (Li et al., 2004).

In this study, we describe the synthesis and structure of the title compound, (I). The CoIII atom in the discrete [Co(CO3)(phen)2]+ cation (Fig. 1) displays a distorted octahedral geometry, being coordinated by four N atoms of two 1,10-phenanthroline ligands and two O atoms of the bidentate carbonate anion. Both phen ligands are planar with r.m.s. deviation of 0.04 Å and involve in π–π interactions with neighboring phen rings. The carbonate ligand is also planar with r.m.s. deviation of 0.002 Å. The charge-balancing nitrate ion is essencially planar with r.m.s. deviation of 0.0015 Å and exibits slight deviation from D3h symmetry. Non-coordinated water molecule is involved in hydrogen bonding (Table 1) and contrubutes stabilization of the 3 d structure forming. As shown in Fig. 2, the hydrogen bonds are supplemented by aromatic π–π stacking interactions of neighboring phen rings, C–H···O and C–H···π interactions.

Experimental

Co(NO3)2.6H2O (0.291 g, 1.0 mmol) was added to a solution containing phen (0.396 g, 2.0 mmol) and adenine (0.135 g, 1.0 mmol) in water-ethanol (10:90, 100 ml). The reaction mixture was stirred for 1 h at 343 K. Thereafter, NaHCO3 solution (0.168 g, 2.00 mmol in 10 ml water-ethanole, 10:90) was added to the mixture for adjusting the pH to 7 by using solid-state pH sensor. The resulting solution was cooled to room temperature and filtered. The filtrate was left to stand in air for slow evaporation and red prism single crystals of (I) were obtained after several months.

Refinement

Water H atoms were located in a difference Fourier map and refined with distance constraints of O—H = 0.83 (3) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
An ORTEP-III drawing of title complex with the atom numbering scheme at 40% ellipsoid.
Fig. 2.
The packing diagram of the complex with hydrogen bonds shown as dashed lines.

Crystal data

[Co(CO3)(C12H8N2)2]NO3·H2OF(000) = 1144
Mr = 559.37Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23029 reflections
a = 13.6986 (9) Åθ = 1.6–28.4°
b = 10.8583 (5) ŵ = 0.80 mm1
c = 16.1494 (10) ÅT = 296 K
β = 106.386 (5)°Prism, red
V = 2304.6 (2) Å30.41 × 0.26 × 0.15 mm
Z = 4

Data collection

Stoe IPDS-2 diffractometer5713 independent reflections
Radiation source: fine-focus sealed tube4021 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 6.67 pixels mm-1θmax = 28.3°, θmin = 1.7°
rotation method scansh = −18→18
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −14→14
Tmin = 0.818, Tmax = 0.905l = −21→21
21353 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0979P] where P = (Fo2 + 2Fc2)/3
5713 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.23394 (19)0.2180 (2)0.81209 (14)0.0555 (5)
H10.17330.17800.78500.067*
C20.2717 (2)0.2124 (2)0.90169 (16)0.0634 (6)
H20.23510.17130.93370.076*
C30.3620 (2)0.2669 (2)0.94241 (15)0.0622 (6)
H30.38810.26071.00200.075*
C40.41549 (18)0.3325 (2)0.89410 (13)0.0517 (5)
C50.50875 (19)0.3963 (2)0.92853 (14)0.0614 (6)
H50.54130.39110.98730.074*
C60.55098 (18)0.4642 (2)0.87781 (15)0.0614 (6)
H60.61060.50760.90260.074*
C70.50573 (17)0.4708 (2)0.78621 (14)0.0519 (5)
C80.54379 (19)0.5401 (2)0.72896 (17)0.0621 (6)
H80.60290.58620.74930.074*
C90.49337 (19)0.5391 (2)0.64327 (16)0.0602 (6)
H90.51750.58580.60500.072*
C100.40593 (17)0.4685 (2)0.61276 (14)0.0513 (5)
H100.37340.46770.55380.062*
C110.41689 (15)0.40448 (19)0.75099 (12)0.0446 (4)
C120.37090 (16)0.33652 (19)0.80467 (12)0.0452 (4)
C130.36955 (17)0.0689 (2)0.68057 (14)0.0530 (5)
H130.37510.08050.73880.064*
C140.41500 (19)−0.0337 (2)0.65606 (16)0.0614 (6)
H140.4503−0.08940.69760.074*
C150.40802 (19)−0.0530 (2)0.57096 (17)0.0604 (6)
H150.4380−0.12200.55420.072*
C160.35541 (17)0.0319 (2)0.50914 (14)0.0522 (5)
C170.3447 (2)0.0247 (2)0.41841 (16)0.0623 (6)
H170.3719−0.04250.39690.075*
C180.2962 (2)0.1128 (2)0.36378 (15)0.0631 (6)
H180.29190.10620.30540.076*
C190.25118 (18)0.2164 (2)0.39328 (14)0.0522 (5)
C200.1959 (2)0.3097 (2)0.34048 (15)0.0651 (6)
H200.18880.30930.28150.078*
C210.1521 (2)0.4017 (3)0.37623 (15)0.0675 (7)
H210.11440.46310.34140.081*
C220.16433 (19)0.4027 (2)0.46493 (14)0.0570 (5)
H220.13430.46540.48840.068*
C230.25937 (16)0.22439 (18)0.48130 (13)0.0458 (4)
C240.31266 (15)0.13283 (19)0.53936 (12)0.0447 (4)
C250.07886 (18)0.3405 (2)0.63398 (14)0.0563 (5)
N50.57159 (19)0.29524 (19)0.57205 (15)0.0663 (6)
N10.28239 (14)0.27885 (15)0.76449 (11)0.0460 (4)
N20.36749 (13)0.40223 (15)0.66510 (10)0.0434 (4)
N30.31838 (13)0.15092 (16)0.62389 (10)0.0450 (4)
N40.21773 (13)0.31645 (16)0.51679 (10)0.0464 (4)
O10.11556 (12)0.23030 (15)0.62705 (10)0.0545 (4)
O20.15083 (11)0.42331 (14)0.64563 (9)0.0528 (4)
O3−0.00973 (13)0.3624 (2)0.63088 (13)0.0822 (6)
O40.5792 (2)0.2517 (2)0.64330 (14)0.0981 (7)
O50.64324 (16)0.3479 (3)0.55465 (15)0.0973 (7)
O60.48923 (17)0.2860 (2)0.51406 (14)0.0837 (6)
O70.8229 (2)0.2576 (4)0.6729 (2)0.1344 (11)
H7A0.764 (2)0.284 (5)0.643 (3)0.202*
H7B0.863 (3)0.289 (5)0.651 (4)0.202*
Co10.24569 (2)0.29966 (2)0.640409 (16)0.04249 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0660 (14)0.0558 (13)0.0496 (12)−0.0034 (10)0.0241 (11)0.0011 (9)
C20.0807 (17)0.0649 (15)0.0516 (13)0.0025 (13)0.0299 (13)0.0099 (11)
C30.0823 (18)0.0644 (15)0.0393 (11)0.0122 (13)0.0163 (12)0.0072 (10)
C40.0601 (13)0.0547 (12)0.0383 (10)0.0106 (10)0.0108 (9)−0.0004 (9)
C50.0639 (14)0.0688 (15)0.0420 (11)0.0113 (12)−0.0006 (10)−0.0074 (10)
C60.0499 (13)0.0686 (15)0.0570 (13)0.0003 (11)0.0008 (11)−0.0126 (11)
C70.0487 (12)0.0522 (11)0.0531 (11)0.0026 (10)0.0117 (10)−0.0065 (9)
C80.0556 (13)0.0582 (13)0.0737 (16)−0.0091 (11)0.0206 (12)−0.0069 (12)
C90.0657 (15)0.0568 (13)0.0637 (14)−0.0037 (11)0.0274 (12)0.0056 (11)
C100.0575 (13)0.0523 (12)0.0475 (11)0.0017 (10)0.0203 (10)0.0024 (9)
C110.0455 (10)0.0467 (10)0.0404 (10)0.0039 (9)0.0101 (8)−0.0026 (8)
C120.0510 (12)0.0463 (10)0.0373 (9)0.0059 (9)0.0109 (9)−0.0014 (8)
C130.0607 (13)0.0512 (11)0.0486 (11)0.0065 (10)0.0180 (10)0.0064 (9)
C140.0679 (15)0.0517 (12)0.0663 (14)0.0127 (11)0.0216 (12)0.0101 (11)
C150.0640 (14)0.0489 (12)0.0729 (15)0.0079 (11)0.0269 (12)−0.0029 (11)
C160.0529 (12)0.0516 (12)0.0561 (12)0.0000 (10)0.0220 (10)−0.0062 (10)
C170.0688 (15)0.0632 (14)0.0605 (14)0.0023 (12)0.0273 (12)−0.0154 (12)
C180.0727 (15)0.0740 (16)0.0475 (12)−0.0024 (13)0.0253 (12)−0.0130 (11)
C190.0563 (12)0.0597 (13)0.0401 (10)−0.0035 (10)0.0126 (9)−0.0060 (9)
C200.0786 (17)0.0763 (16)0.0381 (11)0.0016 (14)0.0126 (11)0.0002 (11)
C210.0809 (17)0.0702 (15)0.0446 (12)0.0139 (14)0.0065 (12)0.0069 (11)
C220.0643 (14)0.0577 (13)0.0431 (11)0.0109 (11)0.0054 (10)0.0003 (10)
C230.0470 (11)0.0506 (11)0.0391 (10)−0.0018 (9)0.0112 (8)−0.0049 (8)
C240.0453 (11)0.0479 (11)0.0421 (10)−0.0015 (9)0.0142 (9)−0.0031 (8)
C250.0484 (12)0.0756 (15)0.0433 (11)0.0041 (11)0.0104 (9)−0.0088 (10)
N50.0804 (16)0.0622 (12)0.0615 (12)0.0192 (12)0.0284 (12)0.0051 (10)
N10.0511 (10)0.0473 (9)0.0407 (8)0.0017 (7)0.0148 (8)−0.0011 (7)
N20.0482 (9)0.0455 (8)0.0373 (8)0.0039 (7)0.0131 (7)−0.0007 (7)
N30.0481 (9)0.0459 (9)0.0415 (8)0.0012 (8)0.0134 (7)0.0008 (7)
N40.0495 (10)0.0496 (9)0.0380 (8)0.0045 (8)0.0086 (7)−0.0035 (7)
O10.0517 (8)0.0618 (9)0.0496 (8)−0.0056 (7)0.0135 (7)−0.0104 (7)
O20.0521 (8)0.0571 (9)0.0488 (8)0.0060 (7)0.0136 (7)−0.0076 (7)
O30.0494 (10)0.1140 (16)0.0828 (13)0.0074 (10)0.0181 (9)−0.0190 (12)
O40.130 (2)0.1037 (15)0.0671 (13)0.0381 (15)0.0386 (13)0.0315 (12)
O50.0698 (13)0.1280 (19)0.0965 (16)0.0040 (13)0.0278 (12)0.0277 (14)
O60.0788 (13)0.0934 (15)0.0770 (13)0.0005 (11)0.0190 (11)−0.0041 (11)
O70.0868 (17)0.166 (3)0.151 (3)0.030 (2)0.0343 (19)0.085 (2)
Co10.04562 (16)0.04603 (15)0.03554 (14)0.00165 (12)0.01098 (11)−0.00324 (11)

Geometric parameters (Å, °)

C1—N11.325 (3)C16—C171.433 (3)
C1—C21.394 (3)C17—C181.343 (4)
C1—H10.9300C17—H170.9300
C2—C31.361 (4)C18—C191.428 (3)
C2—H20.9300C18—H180.9300
C3—C41.406 (3)C19—C231.397 (3)
C3—H30.9300C19—C201.401 (3)
C4—C121.401 (3)C20—C211.373 (4)
C4—C51.421 (3)C20—H200.9300
C5—C61.348 (4)C21—C221.394 (3)
C5—H50.9300C21—H210.9300
C6—C71.435 (3)C22—N41.330 (3)
C6—H60.9300C22—H220.9300
C7—C111.390 (3)C23—N41.356 (3)
C7—C81.401 (3)C23—C241.419 (3)
C8—C91.361 (3)C24—N31.359 (2)
C8—H80.9300C25—O31.224 (3)
C9—C101.390 (3)C25—O21.308 (3)
C9—H90.9300C25—O11.315 (3)
C10—N21.327 (3)C25—Co12.301 (2)
C10—H100.9300N5—O41.221 (3)
C11—N21.361 (2)N5—O51.235 (3)
C11—C121.415 (3)N5—O61.251 (3)
C12—N11.356 (3)N1—Co11.9367 (17)
C13—N31.327 (3)N2—Co11.9513 (17)
C13—C141.387 (3)N3—Co11.9548 (17)
C13—H130.9300N4—Co11.9324 (16)
C14—C151.367 (3)O1—Co11.8907 (16)
C14—H140.9300O2—Co11.8869 (15)
C15—C161.400 (3)O7—H7A0.86 (2)
C15—H150.9300O7—H7B0.81 (5)
C16—C241.394 (3)
N1—C1—C2121.6 (2)C19—C20—H20120.2
N1—C1—H1119.2C20—C21—C22119.8 (2)
C2—C1—H1119.2C20—C21—H21120.1
C3—C2—C1120.2 (2)C22—C21—H21120.1
C3—C2—H2119.9N4—C22—C21121.8 (2)
C1—C2—H2119.9N4—C22—H22119.1
C2—C3—C4119.8 (2)C21—C22—H22119.1
C2—C3—H3120.1N4—C23—C19123.6 (2)
C4—C3—H3120.1N4—C23—C24115.89 (17)
C12—C4—C3116.4 (2)C19—C23—C24120.52 (19)
C12—C4—C5118.1 (2)N3—C24—C16123.66 (19)
C3—C4—C5125.6 (2)N3—C24—C23115.81 (17)
C6—C5—C4121.4 (2)C16—C24—C23120.53 (18)
C6—C5—H5119.3O3—C25—O2124.8 (2)
C4—C5—H5119.3O3—C25—O1124.9 (2)
C5—C6—C7121.3 (2)O2—C25—O1110.31 (19)
C5—C6—H6119.4O3—C25—Co1179.7 (2)
C7—C6—H6119.4O2—C25—Co155.07 (10)
C11—C7—C8117.0 (2)O1—C25—Co155.24 (10)
C11—C7—C6118.0 (2)O4—N5—O5122.1 (3)
C8—C7—C6125.0 (2)O4—N5—O6119.6 (3)
C9—C8—C7119.3 (2)O5—N5—O6118.3 (2)
C9—C8—H8120.3C1—N1—C12118.63 (19)
C7—C8—H8120.3C1—N1—Co1129.21 (16)
C8—C9—C10120.3 (2)C12—N1—Co1112.16 (13)
C8—C9—H9119.9C10—N2—C11117.83 (18)
C10—C9—H9119.9C10—N2—Co1130.49 (15)
N2—C10—C9122.0 (2)C11—N2—Co1111.66 (13)
N2—C10—H10119.0C13—N3—C24117.73 (18)
C9—C10—H10119.0C13—N3—Co1130.61 (14)
N2—C11—C7123.53 (19)C24—N3—Co1111.66 (13)
N2—C11—C12115.83 (18)C22—N4—C23118.39 (18)
C7—C11—C12120.62 (19)C22—N4—Co1129.10 (15)
N1—C12—C4123.3 (2)C23—N4—Co1112.51 (14)
N1—C12—C11116.12 (17)C25—O1—Co189.92 (13)
C4—C12—C11120.5 (2)C25—O2—Co190.28 (13)
N3—C13—C14122.3 (2)H7A—O7—H7B105 (3)
N3—C13—H13118.8O2—Co1—O169.48 (7)
C14—C13—H13118.8O2—Co1—N492.34 (7)
C15—C14—C13120.0 (2)O1—Co1—N490.80 (7)
C15—C14—H14120.0O2—Co1—N191.02 (7)
C13—C14—H14120.0O1—Co1—N191.88 (7)
C14—C15—C16119.5 (2)N4—Co1—N1176.28 (7)
C14—C15—H15120.3O2—Co1—N298.32 (7)
C16—C15—H15120.3O1—Co1—N2167.16 (7)
C24—C16—C15116.8 (2)N4—Co1—N293.79 (7)
C24—C16—C17118.0 (2)N1—Co1—N284.13 (7)
C15—C16—C17125.2 (2)O2—Co1—N3167.90 (7)
C18—C17—C16121.4 (2)O1—Co1—N398.94 (7)
C18—C17—H17119.3N4—Co1—N384.09 (7)
C16—C17—H17119.3N1—Co1—N392.94 (7)
C17—C18—C19121.5 (2)N2—Co1—N393.46 (7)
C17—C18—H18119.3O2—Co1—C2534.65 (8)
C19—C18—H18119.3O1—Co1—C2534.84 (8)
C23—C19—C20116.7 (2)N4—Co1—C2591.74 (8)
C23—C19—C18118.0 (2)N1—Co1—C2591.94 (8)
C20—C19—C18125.2 (2)N2—Co1—C25132.87 (8)
C21—C20—C19119.7 (2)N3—Co1—C25133.67 (8)
C21—C20—H20120.2
N1—C1—C2—C3−2.1 (4)C24—C23—N4—C22−178.0 (2)
C1—C2—C3—C42.1 (4)C19—C23—N4—Co1−179.14 (17)
C2—C3—C4—C12−0.4 (3)C24—C23—N4—Co11.4 (2)
C2—C3—C4—C5178.2 (2)O3—C25—O1—Co1−179.7 (2)
C12—C4—C5—C63.4 (3)O2—C25—O1—Co1−0.44 (17)
C3—C4—C5—C6−175.2 (2)O3—C25—O2—Co1179.7 (2)
C4—C5—C6—C7−2.6 (4)O1—C25—O2—Co10.44 (17)
C5—C6—C7—C11−0.3 (3)C25—O2—Co1—O1−0.31 (12)
C5—C6—C7—C8179.3 (2)C25—O2—Co1—N489.67 (13)
C11—C7—C8—C9−0.1 (3)C25—O2—Co1—N1−91.93 (13)
C6—C7—C8—C9−179.7 (2)C25—O2—Co1—N2−176.15 (12)
C7—C8—C9—C10−1.0 (4)C25—O2—Co1—N317.2 (4)
C8—C9—C10—N21.3 (4)C25—O1—Co1—O20.30 (12)
C8—C7—C11—N21.2 (3)C25—O1—Co1—N4−91.89 (12)
C6—C7—C11—N2−179.23 (19)C25—O1—Co1—N190.69 (13)
C8—C7—C11—C12−177.2 (2)C25—O1—Co1—N219.1 (4)
C6—C7—C11—C122.4 (3)C25—O1—Co1—N3−176.04 (12)
C3—C4—C12—N1−1.6 (3)C22—N4—Co1—O210.6 (2)
C5—C4—C12—N1179.7 (2)C23—N4—Co1—O2−168.73 (15)
C3—C4—C12—C11177.4 (2)C22—N4—Co1—O180.1 (2)
C5—C4—C12—C11−1.3 (3)C23—N4—Co1—O1−99.24 (15)
N2—C11—C12—N1−1.0 (3)C22—N4—Co1—N2−87.9 (2)
C7—C11—C12—N1177.51 (18)C23—N4—Co1—N292.76 (15)
N2—C11—C12—C4179.92 (18)C22—N4—Co1—N3179.0 (2)
C7—C11—C12—C4−1.6 (3)C23—N4—Co1—N3−0.33 (15)
N3—C13—C14—C150.0 (4)C22—N4—Co1—C2545.3 (2)
C13—C14—C15—C160.5 (4)C23—N4—Co1—C25−134.07 (16)
C14—C15—C16—C240.0 (3)C1—N1—Co1—O279.12 (19)
C14—C15—C16—C17178.2 (2)C12—N1—Co1—O2−101.04 (14)
C24—C16—C17—C180.8 (4)C1—N1—Co1—O19.62 (19)
C15—C16—C17—C18−177.4 (3)C12—N1—Co1—O1−170.55 (14)
C16—C17—C18—C19−1.4 (4)C1—N1—Co1—N2177.38 (19)
C17—C18—C19—C230.4 (4)C12—N1—Co1—N2−2.78 (14)
C17—C18—C19—C20−177.3 (3)C1—N1—Co1—N3−89.44 (19)
C23—C19—C20—C21−0.8 (4)C12—N1—Co1—N390.40 (14)
C18—C19—C20—C21176.9 (3)C1—N1—Co1—C2544.5 (2)
C19—C20—C21—C221.0 (4)C12—N1—Co1—C25−135.69 (15)
C20—C21—C22—N40.0 (4)C10—N2—Co1—O2−86.24 (18)
C20—C19—C23—N4−0.4 (3)C11—N2—Co1—O292.43 (13)
C18—C19—C23—N4−178.3 (2)C10—N2—Co1—O1−104.0 (3)
C20—C19—C23—C24179.0 (2)C11—N2—Co1—O174.6 (3)
C18—C19—C23—C241.1 (3)C10—N2—Co1—N46.68 (19)
C15—C16—C24—N3−1.0 (3)C11—N2—Co1—N4−174.65 (13)
C17—C16—C24—N3−179.3 (2)C10—N2—Co1—N1−176.42 (19)
C15—C16—C24—C23179.0 (2)C11—N2—Co1—N12.25 (13)
C17—C16—C24—C230.7 (3)C10—N2—Co1—N390.98 (18)
N4—C23—C24—N3−2.2 (3)C11—N2—Co1—N3−90.35 (13)
C19—C23—C24—N3178.36 (19)C10—N2—Co1—C25−89.2 (2)
N4—C23—C24—C16177.82 (19)C11—N2—Co1—C2589.44 (16)
C19—C23—C24—C16−1.7 (3)C13—N3—Co1—O2−107.1 (3)
C2—C1—N1—C120.1 (3)C24—N3—Co1—O272.5 (3)
C2—C1—N1—Co1179.97 (17)C13—N3—Co1—O1−90.6 (2)
C4—C12—N1—C11.7 (3)C24—N3—Co1—O189.07 (14)
C11—C12—N1—C1−177.32 (18)C13—N3—Co1—N4179.5 (2)
C4—C12—N1—Co1−178.11 (16)C24—N3—Co1—N4−0.81 (14)
C11—C12—N1—Co12.8 (2)C13—N3—Co1—N11.8 (2)
C9—C10—N2—C11−0.3 (3)C24—N3—Co1—N1−178.57 (14)
C9—C10—N2—Co1178.26 (16)C13—N3—Co1—N286.1 (2)
C7—C11—N2—C10−0.9 (3)C24—N3—Co1—N2−94.28 (14)
C12—C11—N2—C10177.51 (18)C13—N3—Co1—C25−93.7 (2)
C7—C11—N2—Co1−179.79 (16)C24—N3—Co1—C2585.94 (16)
C12—C11—N2—Co1−1.3 (2)O1—C25—Co1—O2−179.50 (19)
C14—C13—N3—C24−1.0 (3)O2—C25—Co1—O1179.50 (19)
C14—C13—N3—Co1178.63 (17)O2—C25—Co1—N4−91.60 (12)
C16—C24—N3—C131.5 (3)O1—C25—Co1—N488.90 (12)
C23—C24—N3—C13−178.5 (2)O2—C25—Co1—N188.99 (12)
C16—C24—N3—Co1−178.18 (17)O1—C25—Co1—N1−90.51 (12)
C23—C24—N3—Co11.8 (2)O2—C25—Co1—N25.21 (17)
C21—C22—N4—C23−1.2 (4)O1—C25—Co1—N2−174.29 (11)
C21—C22—N4—Co1179.49 (19)O2—C25—Co1—N3−175.08 (10)
C19—C23—N4—C221.5 (3)O1—C25—Co1—N35.42 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.86 (2)1.98 (2)2.830 (3)168 (5)
O7—H7B···O3i0.81 (5)2.03 (5)2.809 (4)164 (6)
C3—H3···O3ii0.932.543.362 (3)148
C5—H5···O1ii0.932.563.415 (3)153
C8—H8···O7iii0.932.313.130 (4)146
C9—H9···O6iv0.932.353.234 (3)158
C15—H15···O6v0.932.453.370 (3)170
C17—H17···O4v0.932.503.416 (3)167
C1—H1···Cg1vi0.932.923.705 (3)143

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2707).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fu, X.-C., Wang, X.-Y., Li, M.-T., Wang, C.-G. & Deng, X.-T. (2006). Acta Cryst. E62, m1263–m1265.
  • Guild, B. C., Hayden, T. & Brennan, T. F. (1980). Cryst. Struct. Commun.6, 371–374.
  • Hadadzadeh, H., Mansouri, G., Khavasi, H. R., Hoffmann, R.-D., Rodewald, U. Ch. & Pöttgen, R. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x101–x102.
  • Hennig, H., Sieler, J., Benedix, R., Kaiser, J., Sjolin, L. & Lindqvist, O. (1980). Z. Anorg. Allg. Chem.464, 151–154.
  • Li, R. S., Lin, J. L. & Zheng, Y. Q. (2004). Z. Kristallogr. New Cryst. Struct.219, 425–426.
  • McAuliffe, C. A., Pritchard, R. G., Bermejo, M. R., Garcia-Vazquez, A., Macias, A., Sanmartín, J., Romero, J. & Sousa, A. (1992). Acta Cryst. C48, 1841–1842.
  • Niederhoffer, E. C., Martell, A. E., Rudolf, P. & Clearfield, A. (1982). Inorg. Chem.21 , 3734–3741.
  • Sharma, R. P., Singh, A., Brandao, P., Felix, P. & Venugopalan, P. (2009). J. Mol. Struct.921, 227–232.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography