PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o225.
Published online 2009 December 24. doi:  10.1107/S1600536809053227
PMCID: PMC2980271

2-(2-Methyl-1,3-dioxolan-2-yl)-1,1-diphenyl­ethanol

Abstract

The mol­ecules of the title compound, C18H20O3, display an intra­molecular O—H(...)O hydrogen bond between the hydr­oxy donor and a ketal O-atom acceptor. In the crystal, inter­molecular C—H(...)π inter­actions connect adjacent mol­ecules into chains parallel to the b axis.

Related literature

For the preparation of the title compound, see: Paulson et al. (1973 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o225-scheme1.jpg

Experimental

Crystal data

  • C18H20O3
  • M r = 284.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o225-efi1.jpg
  • a = 5.7961 (4) Å
  • b = 8.8271 (7) Å
  • c = 29.754 (2) Å
  • β = 92.150 (7)°
  • V = 1521.26 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 K
  • 0.68 × 0.35 × 0.09 mm

Data collection

  • Oxford Diffraction Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007 [triangle]) T min = 0.974, T max = 1.000
  • 5871 measured reflections
  • 3407 independent reflections
  • 2458 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.100
  • S = 1.03
  • 3407 reflections
  • 194 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053227/jh2121sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053227/jh2121Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Applied Chemistry Cluster, Faculty of Science and Technology, Queensland University of Technology, for financial support.

supplementary crystallographic information

Comment

The molecular stucture of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular hydrogen bond between the hydroxy moiety and one of the ketal oxygen atoms (O3—H1O···O2, oxygen-oxygen distance 2.6820 (12) Å, O—H···O angle 153 (1)°). The presence of the hydrogen bond results in a loss of the average mirror symmetry and as a result the molecular conformer is chiral at C2. Both hands of the conformer are present in the structure as implied by the centrosymmetric space symmetry. The 1H NMR spectrum (room temperature) is indicative of the average conformation indicating that rearrangement in the solution state is rapid on the NMR timescale.

The molecules of (I) are arranged in chains that propagate parallel to the b axis via intermolecular CH···π interactions as illustrated in Fig. 2 (C15—H15edge···C13—C18plane distance 2.96 Å). Interestingly, these are the only significant aryl-aryl interactions. The aliphatic components of the molecule including the methyl, methylene and ketal groups, completely occupy the space between the two phenyl rings (highlighted in Fig. 2) in which π interactions would be expected to occur. Adjacent chains are connected by weakly interacting aliphatic-CH···π interactions in addition to the omnipresent van der Waals forces.

Experimental

The title compound was prepared by the procedure reported by Paulson et al. (1973). Large crystalline plates were obtained from methanol/water by vapour diffusion. NMR 1H (300 MHz, CDCl3) 7.53 (m, 4H, ortho-H), 7.30 (m, 4H, meta-H), 7.18 (tt, 2H, para-H), 5.39 (s, 1H, OH), 3.9–3.6 (symmetrical multiplets, AA'BB', 4H, ketal ring H), 2.84 (s, 2H, CH2), 1.07 (s, 3H, CH3).

Refinement

C-bound H atoms were included in idealized positions and refined using a riding model approximation with methylene, methyl and aromatic bond lengths fixed at 0.99, 0.98 and 0.95 Å, respectively. Uiso(H) values were fixed at 1.2Ueq of the parent C atoms for methylene and aromatic H atoms and 1.5Ueq of the parent C atoms for methyl H atoms. The hydroxy H atom was located in a Fourier difference map and refined with an O—H bond length restraint of 0.98 Å and with Uiso fixed at 1.5Ueq of the parent O atom.

Figures

Fig. 1.
ORTEP depiction of the molecular structure with atom numbering scheme. Ellipsoids are drawn at the 40% probability level. The intramolecular hydrogen bond (O3—H···O2) is indicated by a dashed line.
Fig. 2.
Crystal packing detail viewed parallel to the a axis. CH···π (edge to face) interactions propagate parallel to the b axis (black arrows). The arrangement of the aliphatic components (methyl green, ethylene orange and ketal ...

Crystal data

C18H20O3F(000) = 608
Mr = 284.34Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7961 (4) ÅCell parameters from 2617 reflections
b = 8.8271 (7) Åθ = 3.4–28.6°
c = 29.754 (2) ŵ = 0.08 mm1
β = 92.150 (7)°T = 173 K
V = 1521.26 (19) Å3Plate, colourless
Z = 40.68 × 0.35 × 0.09 mm

Data collection

Oxford Diffraction Gemini diffractometer3407 independent reflections
Radiation source: Enhance (Mo) X-ray Source2458 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 16.0774 pixels mm-1θmax = 28.7°, θmin = 3.5°
ω scansh = −4→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007)k = −11→10
Tmin = 0.974, Tmax = 1.000l = −37→37
5871 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3
3407 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.19 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9148 (2)0.35245 (18)0.06596 (5)0.0381 (4)
H1A0.91500.26200.04680.057*
H1B1.07400.38620.07200.057*
H1C0.82700.43330.05060.057*
C20.8042 (2)0.31506 (15)0.10991 (4)0.0276 (3)
C30.7536 (3)0.10241 (17)0.15222 (6)0.0450 (4)
H3A0.72420.14540.18220.054*
H3B0.8023−0.00460.15580.054*
C40.5432 (3)0.11605 (17)0.12092 (6)0.0465 (4)
H4A0.54030.03470.09800.056*
H4B0.39940.11120.13780.056*
C50.8041 (2)0.44391 (13)0.14479 (4)0.0214 (3)
H5A0.96110.48830.14630.026*
H5B0.77800.39760.17450.026*
C60.63093 (18)0.57549 (14)0.13839 (4)0.0193 (3)
C70.6771 (2)0.67148 (14)0.09647 (4)0.0213 (3)
C80.8846 (2)0.74953 (15)0.09357 (4)0.0300 (3)
H80.99820.74060.11730.036*
C90.9288 (2)0.83969 (17)0.05699 (5)0.0387 (4)
H91.07080.89310.05590.046*
C100.7661 (3)0.85235 (18)0.02188 (5)0.0402 (4)
H100.79600.9139−0.00340.048*
C110.5610 (3)0.77505 (18)0.02399 (5)0.0410 (4)
H110.44950.7829−0.00010.049*
C120.5150 (2)0.68539 (15)0.06104 (4)0.0306 (3)
H120.37190.63330.06220.037*
C130.6400 (2)0.68055 (13)0.17969 (4)0.0208 (3)
C140.4531 (2)0.77607 (15)0.18647 (5)0.0318 (3)
H140.32540.77520.16550.038*
C150.4502 (3)0.87249 (17)0.22329 (5)0.0413 (4)
H150.32110.93680.22730.050*
C160.6344 (3)0.87537 (17)0.25425 (5)0.0391 (4)
H160.63220.94060.27960.047*
C170.8203 (3)0.78268 (16)0.24777 (5)0.0388 (4)
H170.94780.78460.26880.047*
C180.8250 (2)0.68578 (15)0.21082 (4)0.0289 (3)
H180.95560.62280.20690.035*
O10.92307 (16)0.18920 (10)0.12962 (3)0.0369 (3)
O20.56966 (15)0.26253 (10)0.10043 (3)0.0344 (2)
O30.39885 (13)0.51655 (10)0.13579 (3)0.0244 (2)
H1O0.409 (2)0.4207 (11)0.1220 (4)0.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0378 (8)0.0446 (9)0.0321 (8)0.0005 (7)0.0053 (6)−0.0139 (7)
C20.0236 (6)0.0255 (7)0.0335 (7)0.0007 (6)−0.0033 (5)−0.0071 (6)
C30.0514 (10)0.0226 (8)0.0614 (10)−0.0015 (7)0.0062 (8)−0.0012 (7)
C40.0409 (9)0.0264 (8)0.0726 (12)−0.0062 (7)0.0069 (8)−0.0054 (8)
C50.0208 (6)0.0232 (7)0.0199 (6)−0.0019 (5)−0.0009 (5)−0.0005 (5)
C60.0166 (6)0.0227 (6)0.0188 (6)−0.0030 (5)0.0002 (5)0.0006 (5)
C70.0229 (6)0.0222 (6)0.0190 (6)0.0022 (5)0.0023 (5)−0.0001 (5)
C80.0259 (7)0.0365 (8)0.0275 (7)−0.0024 (6)0.0009 (5)0.0066 (6)
C90.0338 (8)0.0415 (9)0.0414 (8)−0.0036 (7)0.0099 (6)0.0131 (7)
C100.0485 (9)0.0439 (9)0.0291 (7)0.0100 (7)0.0122 (7)0.0169 (7)
C110.0451 (9)0.0525 (10)0.0248 (7)0.0059 (8)−0.0052 (6)0.0090 (7)
C120.0299 (7)0.0352 (8)0.0265 (7)0.0000 (6)−0.0039 (5)0.0030 (6)
C130.0235 (6)0.0196 (6)0.0194 (6)−0.0038 (5)0.0036 (5)0.0014 (5)
C140.0269 (7)0.0347 (8)0.0340 (7)0.0012 (6)0.0028 (6)−0.0068 (6)
C150.0371 (8)0.0392 (8)0.0487 (9)0.0027 (7)0.0148 (7)−0.0157 (8)
C160.0486 (9)0.0384 (8)0.0311 (8)−0.0096 (7)0.0112 (7)−0.0133 (7)
C170.0465 (9)0.0411 (9)0.0281 (7)−0.0070 (7)−0.0071 (6)−0.0071 (7)
C180.0312 (7)0.0279 (7)0.0273 (7)0.0007 (6)−0.0027 (5)−0.0023 (6)
O10.0331 (5)0.0252 (5)0.0521 (6)0.0051 (4)−0.0017 (5)−0.0042 (5)
O20.0286 (5)0.0299 (5)0.0443 (6)−0.0050 (4)−0.0044 (4)−0.0100 (5)
O30.0187 (4)0.0257 (5)0.0288 (5)−0.0043 (4)0.0015 (3)−0.0015 (4)

Geometric parameters (Å, °)

C1—C21.5145 (18)C8—C91.3802 (18)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.385 (2)
C1—H1C0.9800C9—H90.9500
C2—O11.4222 (16)C10—C111.374 (2)
C2—O21.4539 (15)C10—H100.9500
C2—C51.5396 (17)C11—C121.3912 (19)
C3—O11.4330 (17)C11—H110.9500
C3—C41.511 (2)C12—H120.9500
C3—H3A0.9900C13—C181.3914 (18)
C3—H3B0.9900C13—C141.3932 (17)
C4—O21.4402 (17)C14—C151.3879 (19)
C4—H4A0.9900C14—H140.9500
C4—H4B0.9900C15—C161.384 (2)
C5—C61.5422 (17)C15—H150.9500
C5—H5A0.9900C16—C171.372 (2)
C5—H5B0.9900C16—H160.9500
C6—O31.4416 (13)C17—C181.3940 (18)
C6—C131.5387 (16)C17—H170.9500
C6—C71.5398 (16)C18—H180.9500
C7—C121.3908 (18)O3—H1O0.943 (8)
C7—C81.3914 (17)
C2—C1—H1A109.5C8—C7—C6119.97 (11)
C2—C1—H1B109.5C9—C8—C7121.39 (13)
H1A—C1—H1B109.5C9—C8—H8119.3
C2—C1—H1C109.5C7—C8—H8119.3
H1A—C1—H1C109.5C8—C9—C10119.99 (13)
H1B—C1—H1C109.5C8—C9—H9120.0
O1—C2—O2105.42 (10)C10—C9—H9120.0
O1—C2—C1108.18 (10)C11—C10—C9119.42 (13)
O2—C2—C1108.96 (11)C11—C10—H10120.3
O1—C2—C5108.16 (10)C9—C10—H10120.3
O2—C2—C5110.03 (10)C10—C11—C12120.71 (13)
C1—C2—C5115.59 (11)C10—C11—H11119.6
O1—C3—C4102.69 (13)C12—C11—H11119.6
O1—C3—H3A111.2C7—C12—C11120.43 (13)
C4—C3—H3A111.2C7—C12—H12119.8
O1—C3—H3B111.2C11—C12—H12119.8
C4—C3—H3B111.2C18—C13—C14117.86 (12)
H3A—C3—H3B109.1C18—C13—C6123.64 (11)
O2—C4—C3103.66 (11)C14—C13—C6118.50 (11)
O2—C4—H4A111.0C15—C14—C13121.21 (13)
C3—C4—H4A111.0C15—C14—H14119.4
O2—C4—H4B111.0C13—C14—H14119.4
C3—C4—H4B111.0C16—C15—C14120.30 (13)
H4A—C4—H4B109.0C16—C15—H15119.8
C2—C5—C6119.34 (10)C14—C15—H15119.8
C2—C5—H5A107.5C17—C16—C15119.07 (13)
C6—C5—H5A107.5C17—C16—H16120.5
C2—C5—H5B107.5C15—C16—H16120.5
C6—C5—H5B107.5C16—C17—C18121.00 (13)
H5A—C5—H5B107.0C16—C17—H17119.5
O3—C6—C13105.32 (8)C18—C17—H17119.5
O3—C6—C7110.19 (9)C13—C18—C17120.55 (12)
C13—C6—C7108.27 (10)C13—C18—H18119.7
O3—C6—C5109.66 (10)C17—C18—H18119.7
C13—C6—C5110.67 (9)C2—O1—C3106.33 (10)
C7—C6—C5112.48 (9)C4—O2—C2108.53 (10)
C12—C7—C8118.05 (11)C6—O3—H1O105.7 (8)
C12—C7—C6121.97 (11)
O1—C3—C4—O2−30.56 (14)C7—C6—C13—C18−104.24 (13)
O1—C2—C5—C6−162.39 (10)C5—C6—C13—C1819.46 (15)
O2—C2—C5—C6−47.72 (14)O3—C6—C13—C14−42.13 (14)
C1—C2—C5—C676.20 (14)C7—C6—C13—C1475.73 (13)
C2—C5—C6—O357.28 (13)C5—C6—C13—C14−160.56 (10)
C2—C5—C6—C13173.04 (10)C18—C13—C14—C15−0.58 (19)
C2—C5—C6—C7−65.72 (14)C6—C13—C14—C15179.44 (12)
O3—C6—C7—C12−4.07 (16)C13—C14—C15—C16−0.1 (2)
C13—C6—C7—C12−118.77 (13)C14—C15—C16—C170.6 (2)
C5—C6—C7—C12118.62 (12)C15—C16—C17—C18−0.4 (2)
O3—C6—C7—C8174.87 (10)C14—C13—C18—C170.75 (19)
C13—C6—C7—C860.17 (14)C6—C13—C18—C17−179.28 (11)
C5—C6—C7—C8−62.43 (15)C16—C17—C18—C13−0.3 (2)
C12—C7—C8—C90.7 (2)O2—C2—O1—C3−29.34 (13)
C6—C7—C8—C9−178.28 (12)C1—C2—O1—C3−145.78 (11)
C7—C8—C9—C10−0.8 (2)C5—C2—O1—C388.33 (12)
C8—C9—C10—C110.3 (2)C4—C3—O1—C237.24 (14)
C9—C10—C11—C120.4 (2)C3—C4—O2—C213.39 (14)
C8—C7—C12—C110.0 (2)O1—C2—O2—C49.01 (13)
C6—C7—C12—C11178.97 (12)C1—C2—O2—C4124.92 (12)
C10—C11—C12—C7−0.6 (2)C5—C2—O2—C4−107.39 (12)
O3—C6—C13—C18137.90 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1O···O20.94 (1)1.81 (1)2.6820 (12)153 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2121).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Paulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Ed.50, 216–217.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography