PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o19.
Published online 2009 December 4. doi:  10.1107/S1600536809050946
PMCID: PMC2980266

2-Methyl-N-o-tolyl­benzamide

Abstract

In the title compound, C15H15NO, the C—N—C(O)—C amide unit is planar (r.m.s. deviation = 0.003 Å) and subtends dihedral angles of 44.71 (5) and 43.33 (5)° with the two o-tolyl rings. These aromatic rings are inclined at 4.94 (7)° to one another. The ortho-methyl groups of the two tolyl rings are anti to one another. In the crystal structure, N—H(...)O hydrogen bonds augmented by C—H(...)π inter­actions link the mol­ecules in a head-to-head fashion into chains along a. Independent chains pack in a herringbone pattern along c.

Related literature

For background to our work on benzamide derivatives, see: Saeed et al. (2008 [triangle]). For the 2-methyl-N-(3-methyl­phen­yl)benzamide isomer, see: Gowda et al. (2008b [triangle]). For other related structures see: Gowda et al. (2008a [triangle],c [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o19-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o19-efi1.jpg
  • a = 4.9340 (4) Å
  • b = 23.639 (2) Å
  • c = 10.0228 (8) Å
  • β = 91.184 (4)°
  • V = 1168.75 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 89 K
  • 0.59 × 0.23 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.762, T max = 1.000
  • 19815 measured reflections
  • 3831 independent reflections
  • 3010 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.168
  • S = 1.09
  • 3831 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050946/tk2588sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050946/tk2588Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

The background to our work on benzamide derivatives has been described in a previous paper (Saeed et al., 2008). In the title compound, (I), the C–N–C(O)–C amide unit is planar, r.m.s. deviation 0.003 Å, and subtends dihedral angles of 44.71 (5)° and 43.33 (5)°, respectively, to the two tolyl rings, Fig. 1. These are inclined at 4.94 (7)° to one another giving the overall molecule a stepped structure. The ortho-methyl groups of the two tolyl rings are anti to one another in contrast to the situation for the isomeric 2-methyl-N-(3-methylphenyl)benzamide structure where the methyl substituents are mutually syn (Gowda et al., 2008b). Bond distances within the molecule are normal and similar to those observed in comparable structures (Gowda et al., 2008a,b,c 2009).

In the crystal structure N1—H1N···O1 hydrogen bonds link molecules in a head to head fashion into chains along b. This leaves the methyl groups of the two tolyl rings positioned to form C—H···π contacts which reinforce the chain formation, Table 1, Fig. 2. There are no apparent contacts between adjacent chains that generate a herringbone packing motif along c, Fig. 3.

Experimental

o-Tolyl chloride (1 mmol) in CHCl3 was treated with o-toluidine (1 mmol) under a nitrogen atmosphere at reflux for 2 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq. HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (81%) as colourless crystals: Anal. calcd. for C15H15NO: C, 79.97; H, 6.71; N, 6.22%; found: C, 80.02; H, 6.66; N, 6.36%.

Refinement

All H-atoms were placed in calculated positions and refined using a riding model with d(N—H) = 0.88 Å, Uiso=1.2Ueq (N); d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic-H; and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The final difference Fourier map showed a high peak close to the O1 and H1N atoms.

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
N—H···O hydrogen bonds (dashed lines) and C—H···π interactions in (I) (dotted lines) linking the molecules into chains along a. The coloured spheres represent the ring centroids.
Fig. 3.
Crystal packing of (I) viewed down the c axis, with hydrogen bonds drawn as dashed lines.

Crystal data

C15H15NOF(000) = 480
Mr = 225.28Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4591 reflections
a = 4.9340 (4) Åθ = 2.2–31.3°
b = 23.639 (2) ŵ = 0.08 mm1
c = 10.0228 (8) ÅT = 89 K
β = 91.184 (4)°Triangular, colourless
V = 1168.75 (17) Å30.59 × 0.23 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3831 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
graphiteRint = 0.064
ω scansθmax = 31.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −7→7
Tmin = 0.762, Tmax = 1.000k = −33→22
19815 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0962P)2 + 0.1512P] where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.0409 (2)0.11397 (4)0.02480 (10)0.0144 (2)
H1N−0.21090.12240.04070.017*
C10.1521 (2)0.13178 (5)0.11331 (11)0.0135 (2)
O10.39796 (17)0.12286 (4)0.09903 (9)0.0201 (2)
C20.0510 (2)0.16434 (5)0.23088 (11)0.0125 (2)
C30.1575 (2)0.15349 (5)0.35932 (12)0.0132 (2)
C310.3642 (2)0.10786 (5)0.38777 (13)0.0181 (3)
H31A0.54050.11970.35420.027*
H31B0.30720.07280.34330.027*
H31C0.37910.10150.48430.027*
C40.0611 (2)0.18607 (5)0.46491 (12)0.0173 (2)
H40.12890.17910.55280.021*
C5−0.1310 (3)0.22825 (5)0.44439 (13)0.0201 (3)
H5−0.19260.24980.51770.024*
C6−0.2333 (3)0.23888 (5)0.31665 (14)0.0201 (3)
H6−0.36400.26790.30210.024*
C7−0.1427 (2)0.20680 (5)0.21060 (13)0.0160 (2)
H7−0.21310.21380.12320.019*
C80.0152 (2)0.08234 (5)−0.09270 (11)0.0127 (2)
C9−0.1221 (2)0.09560 (5)−0.21238 (12)0.0132 (2)
C91−0.3265 (2)0.14277 (5)−0.22165 (13)0.0171 (2)
H91A−0.34880.1547−0.31490.026*
H91B−0.26300.1749−0.16760.026*
H91C−0.50080.1295−0.18850.026*
C10−0.0626 (2)0.06309 (5)−0.32468 (12)0.0175 (3)
H10−0.15250.0713−0.40720.021*
C110.1242 (3)0.01915 (5)−0.31890 (13)0.0196 (3)
H110.1618−0.0021−0.39680.024*
C120.2556 (2)0.00638 (5)−0.19899 (12)0.0175 (2)
H120.3828−0.0238−0.19450.021*
C130.2009 (2)0.03771 (5)−0.08573 (12)0.0154 (2)
H130.28960.0288−0.00340.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0129 (4)0.0156 (5)0.0146 (5)0.0006 (3)0.0006 (3)−0.0028 (3)
C10.0161 (5)0.0119 (5)0.0125 (5)−0.0027 (4)0.0006 (4)0.0005 (4)
O10.0119 (4)0.0272 (5)0.0213 (5)0.0003 (3)0.0014 (3)−0.0051 (3)
C20.0118 (5)0.0111 (5)0.0147 (5)−0.0022 (3)0.0016 (4)−0.0014 (4)
C30.0119 (5)0.0124 (5)0.0152 (5)−0.0014 (4)0.0011 (4)−0.0016 (4)
C310.0164 (6)0.0188 (5)0.0192 (6)0.0022 (4)−0.0003 (4)0.0010 (4)
C40.0177 (6)0.0177 (6)0.0164 (6)−0.0020 (4)0.0013 (4)−0.0045 (4)
C50.0211 (6)0.0157 (5)0.0238 (6)−0.0007 (4)0.0061 (5)−0.0082 (4)
C60.0173 (6)0.0124 (5)0.0307 (7)0.0027 (4)0.0027 (5)−0.0023 (4)
C70.0141 (5)0.0132 (5)0.0208 (6)−0.0011 (4)−0.0014 (4)0.0010 (4)
C80.0127 (5)0.0123 (5)0.0131 (5)−0.0015 (4)0.0019 (4)−0.0005 (4)
C90.0114 (5)0.0128 (5)0.0153 (5)−0.0007 (4)0.0008 (4)0.0001 (4)
C910.0150 (5)0.0165 (5)0.0197 (6)0.0030 (4)0.0002 (4)0.0017 (4)
C100.0188 (6)0.0194 (6)0.0143 (5)0.0016 (4)−0.0021 (4)−0.0022 (4)
C110.0227 (6)0.0186 (6)0.0178 (6)0.0019 (4)0.0020 (5)−0.0059 (4)
C120.0166 (6)0.0148 (5)0.0211 (6)0.0035 (4)0.0014 (4)−0.0012 (4)
C130.0147 (5)0.0152 (5)0.0162 (6)0.0008 (4)−0.0011 (4)0.0005 (4)

Geometric parameters (Å, °)

N1—C11.3553 (15)C6—H60.9500
N1—C81.4270 (14)C7—H70.9500
N1—H1N0.8800C8—C131.3980 (16)
C1—O11.2423 (14)C8—C91.4007 (16)
C1—C21.5013 (16)C9—C101.3989 (16)
C2—C71.3979 (16)C9—C911.5054 (16)
C2—C31.4040 (16)C91—H91A0.9800
C3—C41.4000 (16)C91—H91B0.9800
C3—C311.5074 (16)C91—H91C0.9800
C31—H31A0.9800C10—C111.3891 (17)
C31—H31B0.9800C10—H100.9500
C31—H31C0.9800C11—C121.3869 (18)
C4—C51.3881 (17)C11—H110.9500
C4—H40.9500C12—C131.3867 (17)
C5—C61.3893 (19)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—C71.3872 (17)
C1—N1—C8123.87 (10)C6—C7—C2120.75 (11)
C1—N1—H1N118.1C6—C7—H7119.6
C8—N1—H1N118.1C2—C7—H7119.6
O1—C1—N1123.13 (11)C13—C8—C9121.08 (10)
O1—C1—C2121.24 (10)C13—C8—N1119.50 (10)
N1—C1—C2115.62 (10)C9—C8—N1119.40 (10)
C7—C2—C3120.41 (10)C10—C9—C8117.42 (10)
C7—C2—C1119.42 (10)C10—C9—C91120.57 (10)
C3—C2—C1120.12 (10)C8—C9—C91122.01 (10)
C4—C3—C2117.78 (10)C9—C91—H91A109.5
C4—C3—C31119.32 (11)C9—C91—H91B109.5
C2—C3—C31122.89 (10)H91A—C91—H91B109.5
C3—C31—H31A109.5C9—C91—H91C109.5
C3—C31—H31B109.5H91A—C91—H91C109.5
H31A—C31—H31B109.5H91B—C91—H91C109.5
C3—C31—H31C109.5C11—C10—C9121.81 (11)
H31A—C31—H31C109.5C11—C10—H10119.1
H31B—C31—H31C109.5C9—C10—H10119.1
C5—C4—C3121.65 (12)C12—C11—C10119.79 (11)
C5—C4—H4119.2C12—C11—H11120.1
C3—C4—H4119.2C10—C11—H11120.1
C4—C5—C6120.02 (11)C11—C12—C13119.84 (11)
C4—C5—H5120.0C11—C12—H12120.1
C6—C5—H5120.0C13—C12—H12120.1
C7—C6—C5119.38 (11)C12—C13—C8120.05 (11)
C7—C6—H6120.3C12—C13—H13120.0
C5—C6—H6120.3C8—C13—H13120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.032.8891 (13)166
C31—H31A···Cg1ii0.982.763.6522 (12)152
C91—H91C···Cg2i0.982.833.6999 (12)148

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2588).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bruker (2006). APEX2 and SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1605. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826. [PMC free article] [PubMed]
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography