PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o165–o166.
Published online 2009 December 16. doi:  10.1107/S1600536809053422
PMCID: PMC2980264

2,4-Dichloro-1-[1-(2,4-dichloro­benz­yl­oxy)eth­yl]benzene

Abstract

In the title compound, C15H12Cl4O, the dihedral angle between the least-squares planes of the two benzene rings is 82.6 (9)°. The dihedral angles between the COC mean plane of the ­oxy group and the two benzene rings are 84.3 (5) and 10.8 (5)°. In the crystal, two weak π–π inter­actions [centroid–centroid distances = 3.9989 (8) and 3.7912 (8) Å] and a C—H(...)π inter­action are observed.

Related literature

For related structures, see: Yan et al. (2007 [triangle]); Cui et al. (2005 [triangle]); Moratti et al. (2007 [triangle]); Kotila et al. (1996 [triangle]). For compounds related to bis-lactim ethers of cyclic dipeptides, see: Bolte et al. (1999 [triangle]). For catalytic transfer hydrogeno­lysis of benzyl ethers, see: Brigas et al. (1999 [triangle]). For details of theoretical calculations, see: Becke (1988 [triangle], 1993 [triangle]); Frisch et al. (2004 [triangle]); Hehre et al. (1986 [triangle]); Lee et al. (1988 [triangle]); Schmidt & Polik (2007 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o165-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl4O
  • M r = 350.05
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o165-efi1.jpg
  • a = 9.3755 (4) Å
  • b = 9.9229 (4) Å
  • c = 9.9667 (4) Å
  • α = 62.313 (3)°
  • β = 70.246 (4)°
  • γ = 71.467 (4)°
  • V = 758.22 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 200 K
  • 0.47 × 0.42 × 0.27 mm

Data collection

  • Oxford Diffraction Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.638, T max = 0.812
  • 10547 measured reflections
  • 4961 independent reflections
  • 3334 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.086
  • S = 1.02
  • 4961 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053422/is2502sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053422/is2502Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CSC thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Ether is a class of chemical compounds which contain an ether group — an oxygen atom connected to two (substituted) alkyl or aryl groups — of general formula R–O–R'. Ethers, with their characteristic solvation abilities, excel as inert reaction media in numerous synthetic procedures. However, in practice this usefulness is often tempered by an unfortunate proclivity to facile air oxidation at ambient temperatures which leads to peroxide formation. The structures of the few related compounds viz., 4-(benzyloxy)-2-fluorobenzonitrile (Yan et al., 2007), 2-benzyloxy-3-nitropyridine (Cui et al., 2005), 2,6-bis[2-(4-benzyloxyphenyl)ethyl]biphenyl (Moratti et al., 2007), 3-tert-butyl-4-methyl-2-phenyl-3-(trimethylsilyloxy)oxetane and 2-(2-benzyloxyphenyl)-3-tert-butyl-3-(trimethylsilyloxy)oxetane (Kotila et al., 1996), bis-lactim ethers of cyclic dipeptides: Compounds derived from cyclo(Gly-L-Val) (Bolte et al., 1999) and 5-benzyloxy-1-phenyltetrazole: catalytic transfer hydrogenolysis of benzyl ethers (Brigas et al., 1999) are already reported. In view of the importance of ethers, the synthesis and crystal structure of the title compound, (I), is reported.

In the title compound, C15H12Cl4O, (I), the dihedral angle between the least squares planes of the two benzene rings is 82.6 (9)° (Fig.1). The angle between the mean planes of the oxy group and the two benzene rings is 84.3 (5)° and 10.8 (5)°, respectively. Each of the two dichloro benzene rings are stacked diagonally along the (011) plane (Fig. 2). While no classic hydrogen bonds are found, weak π–π [Cg1···Cg1 = 3.9989 (8) Å; 1 - x, 2 - y, 1 - z and Cg2···Cg2 = 3.7912 (8) Å; 2 - x, 1 - y, 2 - z] and C–H···π [C12–H12A···Cg1; Table 1] intermolecular interactions are observed. Bond length and bond angles are within normal ranges (Allen, 2002).

Following geometry optimization using AM1 with MOPAC (Schmidt & Polik, 2007) and density functional theory (DFT) theoretical calculations (Schmidt & Polik, 2007) at the B3LYP/6–31G(d) level (Becke, 1988, 1993; Lee et al., 1988; Hehre et al., 1986) with the Gaussian03 program package (Frisch at al., 2004), the dihedral angle between the least squares planes of the two benzene rings becomes 83.6 (3)° (AM1) or 85.9 (6)° (DFT). The angles between the mean planes of the oxy group and the two benzene rings become 86.4 (2) and 3.5 (6)° (AM1) or 88.6 (5) and 5.5 (3)° (DFT), respectively. It is clear that the weak π–π and C—H···π intermolecular interactions do influence crystal packing stability.

Experimental

A mixture of 1-(2,4-dichlorophenyl)ethanol (0.01 mol, 1.91 g) and 2,4-dichloro-1-(chloromethyl)benzene (0.01 mol, 1.95 g) in 30 ml dry acetone was refluxed over water bath for 6 h (Fig. 3). The crude compound was filtered and recrystallized from ethyl acetate (m.p. 449–451 K). Composition for C15H12Cl4O: C 51.39 (51.46), H 3.42 (3.46).

Refinement

All of the C-bonded H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 to 1.00 Å, and with Uiso(H) = 1.18–1.49 Ueq(C). The methyl group was allowed to rotate about the C—C bond.

Figures

Fig. 1.
Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids. H atoms are presented as small circles of arbitrary radius.
Fig. 2.
Packing diagram of the title compound, (I), viewed down the a axis.
Fig. 3.
Scheme for the synthesis of 2,4-dichloro-1-{1-[(2,4-dichlorobenzyl) oxy]ethyl}benzene.

Crystal data

C15H12Cl4OZ = 2
Mr = 350.05F(000) = 356
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3755 (4) ÅCell parameters from 5527 reflections
b = 9.9229 (4) Åθ = 4.7–32.4°
c = 9.9667 (4) ŵ = 0.77 mm1
α = 62.313 (3)°T = 200 K
β = 70.246 (4)°Chunk, colorless
γ = 71.467 (4)°0.47 × 0.42 × 0.27 mm
V = 758.22 (5) Å3

Data collection

Oxford Diffraction Gemini diffractometer4961 independent reflections
Radiation source: fine-focus sealed tube3334 reflections with I > 2σ(I)
graphiteRint = 0.015
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.7°
[var phi] and ω scansh = −13→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −14→14
Tmin = 0.638, Tmax = 0.812l = −14→14
10547 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3
4961 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.36865 (4)1.29719 (4)0.57705 (4)0.03911 (9)
Cl20.69931 (4)1.09520 (4)0.12662 (4)0.03879 (10)
Cl30.62657 (4)0.54530 (4)1.05029 (5)0.04802 (11)
Cl41.07650 (5)0.37832 (4)1.34956 (4)0.05247 (12)
O10.75079 (10)1.00830 (9)0.81884 (9)0.0308 (2)
C10.65742 (14)1.12007 (12)0.58044 (13)0.0267 (2)
C20.53833 (14)1.19326 (12)0.50167 (14)0.0267 (2)
C30.54921 (14)1.18650 (12)0.36200 (13)0.0281 (3)
H3A0.46661.23700.31000.034*
C40.68305 (15)1.10458 (13)0.30135 (13)0.0286 (3)
C50.80410 (15)1.02893 (14)0.37548 (14)0.0323 (3)
H5A0.89510.97200.33240.039*
C60.78960 (14)1.03809 (14)0.51481 (14)0.0308 (3)
H6A0.87240.98690.56650.037*
C70.64875 (15)1.13389 (13)0.72917 (13)0.0298 (3)
H7A0.54041.13440.79320.036*
C80.6967 (2)1.28197 (15)0.69213 (17)0.0428 (3)
H8A0.68571.29080.78920.064*
H8B0.63071.37140.62910.064*
H8C0.80461.27940.63420.064*
C90.69843 (15)0.86580 (13)0.89183 (14)0.0301 (3)
H9A0.70240.83130.81180.036*
H9B0.58990.88040.95040.036*
C100.79787 (14)0.74457 (13)1.00075 (13)0.0259 (2)
C110.77114 (14)0.59377 (14)1.08286 (14)0.0298 (3)
C120.85496 (15)0.47887 (14)1.19003 (14)0.0330 (3)
H12A0.83390.37691.24470.040*
C130.97003 (15)0.51798 (14)1.21437 (14)0.0343 (3)
C141.00324 (16)0.66490 (15)1.13334 (15)0.0354 (3)
H14A1.08450.68891.15000.042*
C150.91710 (15)0.77740 (14)1.02725 (14)0.0298 (3)
H15A0.93990.87870.97170.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.03580 (17)0.03395 (17)0.03615 (18)0.00737 (13)−0.01065 (14)−0.01213 (14)
Cl20.0446 (2)0.04732 (19)0.02785 (16)−0.01169 (15)−0.00955 (14)−0.01509 (14)
Cl30.0493 (2)0.03993 (19)0.0552 (2)−0.02003 (16)−0.02309 (18)−0.00438 (16)
Cl40.0482 (2)0.0489 (2)0.0426 (2)0.00674 (17)−0.02492 (18)−0.00436 (16)
O10.0381 (5)0.0265 (4)0.0249 (4)−0.0084 (4)−0.0141 (4)−0.0018 (3)
C10.0305 (6)0.0236 (5)0.0224 (5)−0.0070 (5)−0.0087 (5)−0.0033 (5)
C20.0273 (6)0.0194 (5)0.0264 (6)−0.0027 (4)−0.0068 (5)−0.0042 (4)
C30.0283 (6)0.0260 (6)0.0254 (6)−0.0056 (5)−0.0113 (5)−0.0028 (5)
C40.0360 (7)0.0277 (6)0.0201 (5)−0.0107 (5)−0.0074 (5)−0.0042 (5)
C50.0292 (6)0.0326 (6)0.0281 (6)−0.0019 (5)−0.0057 (5)−0.0097 (5)
C60.0259 (6)0.0350 (6)0.0258 (6)−0.0021 (5)−0.0099 (5)−0.0072 (5)
C70.0351 (7)0.0269 (6)0.0232 (6)−0.0033 (5)−0.0111 (5)−0.0054 (5)
C80.0641 (10)0.0304 (6)0.0389 (7)−0.0115 (7)−0.0219 (7)−0.0092 (6)
C90.0342 (6)0.0281 (6)0.0258 (6)−0.0091 (5)−0.0107 (5)−0.0044 (5)
C100.0271 (6)0.0265 (5)0.0206 (5)−0.0030 (5)−0.0053 (5)−0.0080 (5)
C110.0296 (6)0.0302 (6)0.0287 (6)−0.0075 (5)−0.0070 (5)−0.0097 (5)
C120.0342 (7)0.0268 (6)0.0297 (6)−0.0028 (5)−0.0064 (5)−0.0073 (5)
C130.0338 (7)0.0342 (6)0.0262 (6)0.0051 (5)−0.0112 (5)−0.0094 (5)
C140.0330 (7)0.0396 (7)0.0360 (7)−0.0053 (6)−0.0140 (6)−0.0140 (6)
C150.0311 (6)0.0296 (6)0.0272 (6)−0.0052 (5)−0.0089 (5)−0.0090 (5)

Geometric parameters (Å, °)

Cl1—C21.7401 (13)C7—H7A1.0000
Cl2—C41.7398 (12)C8—H8A0.9800
Cl3—C111.7409 (12)C8—H8B0.9800
Cl4—C131.7398 (12)C8—H8C0.9800
O1—C91.4189 (14)C9—C101.5008 (16)
O1—C71.4325 (13)C9—H9A0.9900
C1—C61.3896 (17)C9—H9B0.9900
C1—C21.3920 (16)C10—C111.3905 (16)
C1—C71.5242 (16)C10—C151.3915 (17)
C2—C31.3926 (16)C11—C121.3873 (16)
C3—C41.3770 (18)C12—C131.3799 (18)
C3—H3A0.9500C12—H12A0.9500
C4—C51.3811 (17)C13—C141.3780 (18)
C5—C61.3917 (17)C14—C151.3869 (17)
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500C15—H15A0.9500
C7—C81.5170 (16)
C9—O1—C7112.73 (9)C7—C8—H8C109.5
C6—C1—C2117.47 (11)H8A—C8—H8C109.5
C6—C1—C7120.34 (10)H8B—C8—H8C109.5
C2—C1—C7122.13 (11)O1—C9—C10110.07 (9)
C1—C2—C3122.11 (11)O1—C9—H9A109.6
C1—C2—Cl1120.19 (9)C10—C9—H9A109.6
C3—C2—Cl1117.69 (9)O1—C9—H9B109.6
C4—C3—C2118.14 (11)C10—C9—H9B109.6
C4—C3—H3A120.9H9A—C9—H9B108.2
C2—C3—H3A120.9C11—C10—C15117.12 (11)
C3—C4—C5122.02 (11)C11—C10—C9120.55 (10)
C3—C4—Cl2118.89 (9)C15—C10—C9122.31 (10)
C5—C4—Cl2119.09 (10)C12—C11—C10123.01 (11)
C4—C5—C6118.40 (12)C12—C11—Cl3118.03 (9)
C4—C5—H5A120.8C10—C11—Cl3118.96 (9)
C6—C5—H5A120.8C13—C12—C11117.65 (11)
C1—C6—C5121.85 (11)C13—C12—H12A121.2
C1—C6—H6A119.1C11—C12—H12A121.2
C5—C6—H6A119.1C14—C13—C12121.51 (11)
O1—C7—C8106.63 (10)C14—C13—Cl4119.22 (10)
O1—C7—C1111.59 (10)C12—C13—Cl4119.27 (10)
C8—C7—C1110.86 (10)C13—C14—C15119.47 (12)
O1—C7—H7A109.2C13—C14—H14A120.3
C8—C7—H7A109.2C15—C14—H14A120.3
C1—C7—H7A109.2C14—C15—C10121.21 (11)
C7—C8—H8A109.5C14—C15—H15A119.4
C7—C8—H8B109.5C10—C15—H15A119.4
H8A—C8—H8B109.5
C6—C1—C2—C3−0.25 (17)C2—C1—C7—C8−83.23 (14)
C7—C1—C2—C3176.98 (10)C7—O1—C9—C10−172.27 (9)
C6—C1—C2—Cl1179.61 (9)O1—C9—C10—C11−178.34 (11)
C7—C1—C2—Cl1−3.16 (15)O1—C9—C10—C153.20 (17)
C1—C2—C3—C4−0.16 (17)C15—C10—C11—C121.43 (19)
Cl1—C2—C3—C4179.98 (8)C9—C10—C11—C12−177.11 (12)
C2—C3—C4—C50.65 (17)C15—C10—C11—Cl3−178.37 (10)
C2—C3—C4—Cl2−179.79 (8)C9—C10—C11—Cl33.10 (16)
C3—C4—C5—C6−0.72 (18)C10—C11—C12—C13−0.2 (2)
Cl2—C4—C5—C6179.73 (9)Cl3—C11—C12—C13179.57 (10)
C2—C1—C6—C50.18 (18)C11—C12—C13—C14−1.24 (19)
C7—C1—C6—C5−177.10 (11)C11—C12—C13—Cl4179.17 (10)
C4—C5—C6—C10.28 (19)C12—C13—C14—C151.4 (2)
C9—O1—C7—C8166.43 (10)Cl4—C13—C14—C15−178.97 (10)
C9—O1—C7—C1−72.37 (12)C13—C14—C15—C10−0.2 (2)
C6—C1—C7—O1−24.78 (15)C11—C10—C15—C14−1.21 (18)
C2—C1—C7—O1158.07 (10)C9—C10—C15—C14177.29 (12)
C6—C1—C7—C893.92 (14)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.952.973.8888 (15)162

Symmetry codes: (i) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2502).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Becke, A. D. (1988). Phys. Rev. A38, 3098–100. [PubMed]
  • Becke, A. D. (1993). J. Chem. Phys.98, 5648–5652.
  • Bolte, M., Benecke, B. & Egert, E. (1999). Acta Cryst. C55, 964–968.
  • Brigas, A. F., Clegg, W., Johnstone, R. A. W. & Mendonca, R. F. (1999). Acta Cryst. C55, 778–781.
  • Cui, Y., Liu, H.-M. & Zhang, W.-Q. (2005). Acta Cryst. E61, o685–o686.
  • Frisch, M. J. et al. (2004). GAUSSIAN03 Gaussian Inc., Wallingford, CT, USA.
  • Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory New York: Wiley.
  • Kotila, S., Jäntti, A., Penttinen, S. & Bach, T. (1996). Acta Cryst. C52, 1722–1725.
  • Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [PubMed]
  • Moratti, S. C., Simpson, J. & Tierney, S. M. (2007). Acta Cryst. E63, o3954.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yan, L.-Z., Bi, S. & Ren, R. (2007). Acta Cryst. E63, o775–o776.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography