PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m41.
Published online 2009 December 12. doi:  10.1107/S1600536809052325
PMCID: PMC2980262

catena-Poly[[di-μ-iodido-dicopper(I)(CuCu)]bis­(μ-4,4′-di-3-pyridyl-2,2′-disulfanediyldipyrimidine)]

Abstract

The title complex, [Cu2I2(C18H12N6S2)2]n, contains a Cu2I2 core with a Cu—Cu distance of 2.6935 (14) Å. The CuI atom is coordinated by two bridging 4,4′-di-3-pyridyl-2,2′-disulfanediyldipyrimidine ligands and two bridging I atoms, forming a double chain.

Related literature

For coordination polymers with 4,4′-dipyridine­disulfide, see: Horikoshi & Mochida (2006 [triangle]). For coordination polymers with 2,2′-dithio­bis(4-pyridin-4-yl-pyrimidine), see: Zhu et al. (2009 [triangle]). For the structure of free 2,2′-dithio­bis(3-pyridin-4-yl-pyrimidine), see: Ji et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m41-scheme1.jpg

Experimental

Crystal data

  • [Cu2I2(C18H12N6S2)2]
  • M r = 1133.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m41-efi1.jpg
  • a = 8.5561 (6) Å
  • b = 10.7702 (8) Å
  • c = 11.9045 (8) Å
  • α = 98.110 (1)°
  • β = 107.193 (1)°
  • γ = 96.449 (1)°
  • V = 1023.66 (13) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.80 mm−1
  • T = 298 K
  • 0.19 × 0.15 × 0.12 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.611, T max = 0.715
  • 5395 measured reflections
  • 3568 independent reflections
  • 2956 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.108
  • S = 0.99
  • 3568 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 1.28 e Å−3
  • Δρmin = −1.03 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052325/hy2260sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052325/hy2260Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges finanical support from the China Postdoctoral Reseach Fund (20070411010).

supplementary crystallographic information

Comment

In recent years, heterocyclic disulfide ligands have received increasing attention because of their conformationally defined dihedral angle (Horikoshi & Mochida, 2006). As continuation of our previous research (Zhu et al., 2009), we report here a copper(I) coordination polymer with a 2,2'-dithiobis(3-pyridin-4-ylpyrimidine) (L) ligand.

The CuI atom in the title complex has a tetrahedral coordination geometry completed by two N atoms from two different L ligands and two bridging I atoms (Fig. 1 and Table 1). The C—S—S—C torsion angle of 81.2 (2)° in L is almost identical with the free molecule (Ji et al., 2009). Alternative linkings of one Cu2I2 core and two bridging L ligands generate a one-dimensional double chain (Fig. 2).

Experimental

A CH2Cl2 solution (5 ml) of ligand L (0.1 mmol) was slowly added into a CuI (0.1 mmol) solution in acetonitrile (10 ml). The mixture was kept on standing for 3 d to give single crystals suitable for X-ray diffraction analysis.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.98 Å from I1 and the deepest hole 0.92 Å from I1.

Figures

Fig. 1.
The structure of the title compound with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x, y + 1, z - 1.]
Fig. 2.
The one-dimensional double chain viewed along the a axis.

Crystal data

[Cu2I2(C18H12N6S2)2]Z = 1
Mr = 1133.86F(000) = 552
Triclinic, P1Dx = 1.839 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5561 (6) ÅCell parameters from 3568 reflections
b = 10.7702 (8) Åθ = 2.3–25.5°
c = 11.9045 (8) ŵ = 2.80 mm1
α = 98.110 (1)°T = 298 K
β = 107.193 (1)°Block, yellow
γ = 96.449 (1)°0.19 × 0.15 × 0.12 mm
V = 1023.66 (13) Å3

Data collection

Bruker APEXII CCD diffractometer3568 independent reflections
Radiation source: fine-focus sealed tube2956 reflections with I > 2σ(I)
graphiteRint = 0.097
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→10
Tmin = 0.611, Tmax = 0.715k = −12→12
5395 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0541P)2] where P = (Fo2 + 2Fc2)/3
3568 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = −1.03 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.31696 (4)0.97725 (3)0.10525 (3)0.04697 (15)
Cu10.38873 (9)0.92391 (6)−0.09670 (6)0.0503 (2)
S10.13540 (17)0.55124 (12)0.27577 (10)0.0447 (3)
S20.02067 (16)0.43336 (14)0.35509 (12)0.0498 (3)
N20.2094 (5)0.5182 (3)0.0809 (3)0.0340 (8)
C50.3021 (5)0.5258 (4)−0.0900 (4)0.0328 (10)
N30.0948 (5)0.3267 (4)0.1271 (4)0.0426 (10)
N10.3815 (5)0.7322 (4)−0.1296 (3)0.0387 (9)
C90.1455 (5)0.4513 (4)0.1466 (4)0.0340 (10)
N50.1235 (5)0.2820 (4)0.4999 (3)0.0381 (9)
C10.3142 (6)0.6574 (4)−0.0705 (4)0.0356 (10)
H1A0.27280.6955−0.01270.043*
C60.2284 (5)0.4523 (4)−0.0183 (4)0.0330 (10)
C100.1797 (6)0.3566 (5)0.4357 (4)0.0392 (11)
C30.4346 (6)0.5483 (5)−0.2380 (4)0.0436 (11)
H3B0.47720.5130−0.29630.052*
C130.2302 (6)0.2187 (4)0.5638 (4)0.0381 (10)
C120.3936 (6)0.2331 (5)0.5625 (4)0.0480 (13)
H12A0.47040.18940.60670.058*
C40.3639 (6)0.4719 (5)−0.1776 (4)0.0411 (11)
H4A0.35720.3842−0.19510.049*
N40.3312 (5)0.3777 (4)0.4277 (3)0.0453 (10)
C110.4371 (6)0.3147 (5)0.4933 (5)0.0515 (13)
H11A0.54610.32610.49250.062*
C20.4419 (6)0.6772 (5)−0.2117 (4)0.0418 (11)
H2B0.49090.7284−0.25280.050*
C80.1115 (6)0.2636 (5)0.0281 (5)0.0457 (12)
H8A0.07660.17610.00870.055*
C70.1775 (6)0.3213 (4)−0.0466 (4)0.0416 (11)
H7A0.18830.2739−0.11480.050*
C140.1671 (6)0.1341 (4)0.6336 (4)0.0380 (10)
C15−0.0011 (6)0.1112 (5)0.6209 (4)0.0475 (12)
H15A−0.07610.15000.56910.057*
C16−0.0545 (7)0.0301 (5)0.6864 (5)0.0532 (14)
H16A−0.16630.01410.67960.064*
C180.2701 (7)0.0733 (5)0.7125 (4)0.0456 (12)
H18A0.38270.08800.72170.055*
C170.0554 (7)−0.0264 (5)0.7604 (4)0.0503 (13)
H17A0.0161−0.08250.80230.060*
N60.2191 (5)−0.0053 (4)0.7765 (3)0.0442 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0504 (2)0.0489 (2)0.0526 (2)0.00536 (15)0.02987 (17)0.01773 (16)
Cu10.0647 (4)0.0437 (4)0.0576 (4)0.0113 (3)0.0319 (3)0.0285 (3)
S10.0595 (8)0.0464 (7)0.0346 (6)0.0117 (6)0.0179 (6)0.0187 (5)
S20.0478 (7)0.0725 (9)0.0424 (7)0.0181 (7)0.0204 (6)0.0338 (7)
N20.039 (2)0.034 (2)0.0308 (19)0.0039 (16)0.0112 (16)0.0143 (16)
C50.031 (2)0.036 (2)0.031 (2)0.0029 (19)0.0078 (18)0.0140 (19)
N30.045 (2)0.040 (2)0.049 (2)0.0049 (18)0.0167 (19)0.0225 (19)
N10.044 (2)0.038 (2)0.038 (2)0.0031 (17)0.0182 (18)0.0159 (17)
C90.035 (2)0.040 (3)0.028 (2)0.008 (2)0.0081 (19)0.0147 (19)
N50.042 (2)0.046 (2)0.0293 (19)0.0054 (18)0.0114 (17)0.0156 (17)
C10.042 (3)0.035 (2)0.036 (2)0.007 (2)0.018 (2)0.012 (2)
C60.033 (2)0.034 (2)0.033 (2)0.0050 (19)0.0091 (19)0.0131 (19)
C100.044 (3)0.045 (3)0.030 (2)0.004 (2)0.012 (2)0.012 (2)
C30.046 (3)0.053 (3)0.036 (2)0.008 (2)0.018 (2)0.008 (2)
C130.046 (3)0.040 (3)0.029 (2)0.004 (2)0.011 (2)0.012 (2)
C120.041 (3)0.060 (3)0.047 (3)0.012 (2)0.010 (2)0.030 (3)
C40.046 (3)0.039 (3)0.039 (3)0.005 (2)0.015 (2)0.008 (2)
N40.043 (2)0.057 (3)0.039 (2)0.006 (2)0.0127 (18)0.021 (2)
C110.038 (3)0.069 (4)0.051 (3)0.001 (3)0.013 (2)0.027 (3)
C20.046 (3)0.048 (3)0.036 (3)0.000 (2)0.018 (2)0.016 (2)
C80.051 (3)0.034 (3)0.052 (3)0.004 (2)0.015 (2)0.014 (2)
C70.056 (3)0.031 (2)0.039 (3)0.006 (2)0.017 (2)0.010 (2)
C140.046 (3)0.037 (2)0.033 (2)0.005 (2)0.016 (2)0.010 (2)
C150.046 (3)0.059 (3)0.040 (3)0.004 (2)0.014 (2)0.017 (2)
C160.050 (3)0.070 (4)0.045 (3)0.001 (3)0.022 (2)0.018 (3)
C180.049 (3)0.048 (3)0.045 (3)0.004 (2)0.018 (2)0.021 (2)
C170.064 (3)0.048 (3)0.047 (3)−0.002 (3)0.029 (3)0.018 (2)
N60.054 (3)0.042 (2)0.041 (2)0.0064 (19)0.0178 (19)0.0175 (18)

Geometric parameters (Å, °)

Cu1—I12.6550 (7)C3—H3B0.9300
Cu1—I1i2.6579 (8)C13—C121.394 (7)
Cu1—N12.037 (4)C13—C141.477 (6)
Cu1—N6ii2.060 (4)C12—C111.379 (7)
Cu1—Cu1i2.6935 (14)C12—H12A0.9300
S1—C91.779 (5)C4—H4A0.9300
S1—S22.0183 (17)N4—C111.327 (6)
S2—C101.778 (5)C11—H11A0.9300
N2—C91.323 (5)C2—H2B0.9300
N2—C61.352 (6)C8—C71.367 (6)
C5—C11.390 (6)C8—H8A0.9300
C5—C41.389 (6)C7—H7A0.9300
C5—C61.466 (6)C14—C181.379 (7)
N3—C91.329 (6)C14—C151.392 (7)
N3—C81.329 (6)C15—C161.376 (7)
N1—C21.333 (6)C15—H15A0.9300
N1—C11.330 (5)C16—C171.349 (7)
N5—C131.324 (6)C16—H16A0.9300
N5—C101.328 (6)C18—N61.336 (6)
C1—H1A0.9300C18—H18A0.9300
C6—C71.391 (6)C17—N61.344 (7)
C10—N41.325 (6)C17—H17A0.9300
C3—C21.370 (7)N6—Cu1iii2.060 (4)
C3—C41.368 (6)
Cu1—I1—Cu1i60.92 (3)C12—C13—C14123.0 (4)
N1—Cu1—N6ii115.68 (16)C11—C12—C13117.4 (4)
N1—Cu1—I1106.36 (10)C11—C12—H12A121.3
N6ii—Cu1—I1106.25 (12)C13—C12—H12A121.3
N1—Cu1—I1i105.02 (11)C3—C4—C5119.8 (4)
N6ii—Cu1—I1i104.97 (12)C3—C4—H4A120.1
I1—Cu1—I1i119.08 (3)C5—C4—H4A120.1
N1—Cu1—Cu1i122.23 (11)C10—N4—C11113.9 (4)
N6ii—Cu1—Cu1i122.06 (12)N4—C11—C12123.3 (5)
I1—Cu1—Cu1i59.59 (2)N4—C11—H11A118.3
I1i—Cu1—Cu1i59.49 (3)C12—C11—H11A118.3
C9—S1—S2104.18 (16)N1—C2—C3122.6 (4)
C10—S2—S1104.60 (17)N1—C2—H2B118.7
C9—N2—C6116.6 (4)C3—C2—H2B118.7
C1—C5—C4116.6 (4)C7—C8—N3123.1 (4)
C1—C5—C6119.6 (4)C7—C8—H8A118.5
C4—C5—C6123.8 (4)N3—C8—H8A118.5
C9—N3—C8114.2 (4)C8—C7—C6118.6 (4)
C2—N1—C1117.8 (4)C8—C7—H7A120.7
C2—N1—Cu1121.4 (3)C6—C7—H7A120.7
C1—N1—Cu1120.8 (3)C18—C14—C15117.0 (4)
N2—C9—N3128.4 (4)C18—C14—C13122.1 (4)
N2—C9—S1110.9 (3)C15—C14—C13120.8 (4)
N3—C9—S1120.7 (3)C14—C15—C16118.8 (5)
C13—N5—C10116.9 (4)C14—C15—H15A120.6
N1—C1—C5123.9 (4)C16—C15—H15A120.6
N1—C1—H1A118.0C17—C16—C15120.0 (5)
C5—C1—H1A118.0C17—C16—H16A120.0
N2—C6—C7119.1 (4)C15—C16—H16A120.0
N2—C6—C5116.7 (4)N6—C18—C14124.5 (5)
C7—C6—C5124.2 (4)N6—C18—H18A117.8
N4—C10—N5128.4 (4)C14—C18—H18A117.8
N4—C10—S2120.6 (3)C16—C17—N6123.1 (5)
N5—C10—S2111.1 (3)C16—C17—H17A118.5
C2—C3—C4119.3 (4)N6—C17—H17A118.5
C2—C3—H3B120.4C18—N6—C17116.6 (4)
C4—C3—H3B120.4C18—N6—Cu1iii120.4 (4)
N5—C13—C12120.0 (4)C17—N6—Cu1iii122.7 (3)
N5—C13—C14117.0 (4)
Cu1i—I1—Cu1—N1118.18 (12)C10—N5—C13—C120.7 (7)
Cu1i—I1—Cu1—N6ii−118.04 (12)C10—N5—C13—C14−179.0 (4)
Cu1i—I1—Cu1—I1i0.0N5—C13—C12—C110.1 (7)
C9—S1—S2—C1081.1 (2)C14—C13—C12—C11179.7 (4)
N6ii—Cu1—N1—C275.1 (4)C2—C3—C4—C5−0.6 (7)
I1—Cu1—N1—C2−167.2 (3)C1—C5—C4—C31.1 (6)
I1i—Cu1—N1—C2−40.1 (4)C6—C5—C4—C3−178.3 (4)
Cu1i—Cu1—N1—C2−103.2 (3)N5—C10—N4—C110.0 (8)
N6ii—Cu1—N1—C1−104.0 (4)S2—C10—N4—C11179.6 (4)
I1—Cu1—N1—C113.7 (4)C10—N4—C11—C120.8 (8)
I1i—Cu1—N1—C1140.8 (3)C13—C12—C11—N4−0.9 (8)
Cu1i—Cu1—N1—C177.7 (4)C1—N1—C2—C31.0 (7)
C6—N2—C9—N3−1.0 (7)Cu1—N1—C2—C3−178.1 (4)
C6—N2—C9—S1178.0 (3)C4—C3—C2—N1−0.5 (7)
C8—N3—C9—N2−0.2 (7)C9—N3—C8—C71.0 (7)
C8—N3—C9—S1−179.1 (3)N3—C8—C7—C6−0.6 (8)
S2—S1—C9—N2176.0 (3)N2—C6—C7—C8−0.7 (7)
S2—S1—C9—N3−4.8 (4)C5—C6—C7—C8179.6 (4)
C2—N1—C1—C5−0.5 (7)N5—C13—C14—C18−173.4 (4)
Cu1—N1—C1—C5178.7 (3)C12—C13—C14—C186.9 (7)
C4—C5—C1—N1−0.5 (7)N5—C13—C14—C157.5 (7)
C6—C5—C1—N1178.9 (4)C12—C13—C14—C15−172.2 (5)
C9—N2—C6—C71.4 (6)C18—C14—C15—C16−0.2 (7)
C9—N2—C6—C5−178.8 (4)C13—C14—C15—C16178.9 (4)
C1—C5—C6—N2−14.3 (6)C14—C15—C16—C17−0.6 (8)
C4—C5—C6—N2165.0 (4)C15—C14—C18—N60.0 (7)
C1—C5—C6—C7165.5 (4)C13—C14—C18—N6−179.1 (4)
C4—C5—C6—C7−15.2 (7)C15—C16—C17—N61.6 (8)
C13—N5—C10—N4−0.8 (7)C14—C18—N6—C170.9 (7)
C13—N5—C10—S2179.6 (3)C14—C18—N6—Cu1iii−174.0 (4)
S1—S2—C10—N4−4.1 (4)C16—C17—N6—C18−1.7 (8)
S1—S2—C10—N5175.5 (3)C16—C17—N6—Cu1iii173.0 (4)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y+1, z−1; (iii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2260).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev.250, 2595–2609.
  • Ji, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, H.-B., Wang, H., Kong, F., Gou, S.-H. & Sun, Y.-M. (2009). J. Mol. Struct.936, 99–103.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography