PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o243.
Published online 2009 December 24. doi:  10.1107/S160053680905435X
PMCID: PMC2980260

2,4-Dichloro­benzaldehyde

Abstract

In the crystal structure of the title compound, C7H4Cl2O, the mol­ecules form a network of weak C—H(...)O inter­actions involving the aldehyde O atom and the ortho-H atom on the benzene ring together with C—H(...)O inter­actions between the formyl groups. Together, these connect the mol­ecules into (10An external file that holds a picture, illustration, etc.
Object name is e-66-0o243-efi1.jpg) layers, which are stabilized additionally by π–π stacking inter­actions of the benzene rings [centroid–centroid distance = 3.772 (1) Å]. The aldehyde group is twisted relative to the benzene ring by 7.94 (13)°.

Related literature

For applications of the title compound, see: Katagi (1988 [triangle]); Wang et al. (2004 [triangle]). For a related structure, see: Gawlicka-Chruszcz et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o243-scheme1.jpg

Experimental

Crystal data

  • C7H4Cl2O
  • M r = 175.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o243-efi2.jpg
  • a = 13.100 (1) Å
  • b = 3.772 (1) Å
  • c = 15.332 (1) Å
  • β = 113.797 (2)°
  • V = 693.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 100 K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (Otwinowski et al., 2003 [triangle]) T min = 0.90, T max = 0.92
  • 6924 measured reflections
  • 3737 independent reflections
  • 3221 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.114
  • S = 1.10
  • 3737 reflections
  • 107 parameters
  • All H-atom parameters refined
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: HKL-2000 (Otwinowski & Minor, 1997 [triangle]); cell refinement: HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]) and HKL-3000SM (Minor et al., 2006 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and HKL-3000SM; molecular graphics: HKL-3000SM, ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 (Farrugia, 1997 [triangle]), Mercury (Macrae et al., 2006 [triangle]) and POV-RAY (The POV-RAY Team, 2004 [triangle]); software used to prepare material for publication: HKL-3000SM.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680905435X/gk2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905435X/gk2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by contract GI11496 from HKL Research, Inc.

supplementary crystallographic information

Comment

2,4-Dichlorobenzaldehyde is primarily used in the preparation of dyes, insecticides, herbicides, antiseptics and disinfectants (Wang et al., 2004). It is also used as an intermediate of organic synthesis of fungicide diniconazole (Katagi, 1988).

In the crystal structure of 2,4-dichlorobenzaldehyde (Fig. 1), the aldehyde group is twisted relative to the benzene ring with torsion angles C6—C1—C7—O1 and C2—C1—C7—O1 being -7.94 (13)° and 170.86 (9)°. These torsion angles are significantly smaller in comparison to the corresponding angles in 2,6-dichlorobenzaldehyde (Gawlicka-Chruszcz et al., 2006) which are -27.3° and 152.6° respectively. Significantly bigger twist of the aldehyde group in the case of 2,6-dichlorobenzaldehyde is caused by presence of the chlorine atoms in ortho positions.

The change of the position of chlorine atom causes that interactions in which chlorine atoms are involved in 2,4-dichlorobenzaldehyde and 2,6-dichlorobenzaldehyde differ significantly. In the case of 2,6-dichlorobenzaldehyde Cl2 was involved in weak interaction with hydrogen atom from neighboring benzene ring, while in 2,4-dichlorobenzaldehyde structure such interactions are not observed for any of the chlorine atoms. However, in the case of 2,4-dichlorobenzaldehyde, the chlorine atoms from neighboring molecules form short contacts with Cl1···Cl2 (1/2 + x,1/2 - y,1/2 + z) distance being 3.442Å (Fig. 2).

The weak O···H—C interactions (Table 1) between the aldehyde oxygen and the benzene hydrogen atoms connect molecules to form layers, which are additionally stabilized by stacking of benzene rings (Fig. 2). The oxygen atom from the aldehyde group plays a central role in the formation of weak interactions, and O1···H6—C6 (1 - x,-1 - y,1 - z) and O1···H7—C7 (1,5 - x,-1/2 + y,1.5 - z) distances are 2.51Å and 2.53Å respectively.

Experimental

2,4-dichlorobenzaldehyde was purchased from ALDRICH (99% purity, lot 08722CD). The compound was provided in crystalline form.

Refinement

All hydrogen atoms were localized using the difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Figures

Fig. 1.
The asymmetric unit of the reported structure. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are drawn as grey spheres of an arbitrary radius.
Fig. 2.
The molecular packing of 2,4-dichlorobenzaldehyde. Weak interactions, in which the oxygen atom participates, are shown as blue, dashed lines.

Crystal data

C7H4Cl2OF(000) = 352
Mr = 175.01Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71074 Å
Hall symbol: -P 2ynCell parameters from 31891 reflections
a = 13.100 (1) Åθ = 1.0–37.8°
b = 3.772 (1) ŵ = 0.85 mm1
c = 15.332 (1) ÅT = 100 K
β = 113.797 (2)°Block, colorless
V = 693.2 (3) Å30.40 × 0.10 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3737 independent reflections
Radiation source: fine-focus sealed tube3221 reflections with I > 2σ(I)
graphiteRint = 0.063
Detector resolution: 10 pixels mm-1θmax = 37.8°, θmin = 1.0°
ω scansh = −22→22
Absorption correction: multi-scan (Otwinowski et al., 2003)k = −6→6
Tmin = 0.90, Tmax = 0.92l = −26→24
6924 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.114All H-atom parameters refined
S = 1.10w = 1/[σ2(Fo2) + (0.0708P)2 + 0.0197P] where P = (Fo2 + 2Fc2)/3
3737 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl20.138241 (15)0.17792 (6)0.579292 (15)0.02422 (7)
Cl10.558151 (16)0.15135 (6)0.840216 (14)0.02526 (7)
C10.49878 (6)−0.1166 (2)0.66074 (6)0.01968 (13)
C30.35318 (6)0.1385 (2)0.70157 (6)0.02006 (14)
C20.46410 (6)0.0484 (2)0.72565 (5)0.01980 (13)
C60.41880 (6)−0.1866 (2)0.56890 (6)0.02060 (14)
C50.30765 (6)−0.0964 (2)0.54240 (6)0.02080 (13)
C40.27652 (6)0.0634 (2)0.60987 (5)0.01992 (13)
O10.64561 (5)−0.4059 (2)0.63526 (5)0.02975 (14)
C70.61622 (6)−0.2245 (2)0.68671 (6)0.02340 (14)
H30.3319 (13)0.260 (4)0.7450 (12)0.038 (3)*
H50.2576 (13)−0.150 (4)0.4813 (13)0.042 (4)*
H60.4423 (13)−0.293 (5)0.5239 (12)0.046 (4)*
H70.6686 (14)−0.131 (4)0.7449 (13)0.041 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl20.01697 (10)0.02944 (12)0.02558 (11)0.00285 (6)0.00789 (8)0.00236 (6)
Cl10.02130 (11)0.02926 (12)0.02104 (11)−0.00059 (6)0.00422 (8)−0.00518 (6)
C10.0165 (3)0.0207 (3)0.0213 (3)−0.0005 (2)0.0071 (2)−0.0007 (2)
C30.0190 (3)0.0209 (3)0.0206 (3)0.0003 (2)0.0083 (3)−0.0003 (2)
C20.0182 (3)0.0203 (3)0.0195 (3)−0.0014 (2)0.0062 (2)−0.0017 (2)
C60.0189 (3)0.0226 (3)0.0206 (3)−0.0002 (2)0.0082 (2)−0.0008 (2)
C50.0185 (3)0.0229 (3)0.0195 (3)−0.0007 (2)0.0061 (2)−0.0008 (2)
C40.0168 (3)0.0209 (3)0.0215 (3)0.0001 (2)0.0071 (2)0.0016 (2)
O10.0214 (3)0.0378 (3)0.0304 (3)0.0045 (2)0.0108 (2)−0.0046 (3)
C70.0178 (3)0.0266 (3)0.0251 (3)−0.0001 (3)0.0080 (3)−0.0013 (3)

Geometric parameters (Å, °)

Cl2—C41.7327 (7)C3—H30.939 (17)
Cl1—C21.7343 (8)C6—C51.3869 (11)
C1—C21.3961 (11)C6—H60.950 (19)
C1—C61.3999 (11)C5—C41.3930 (11)
C1—C71.4820 (11)C5—H50.923 (18)
C3—C41.3877 (11)O1—C71.2180 (11)
C3—C21.3893 (11)C7—H70.946 (17)
C2—C1—C6118.32 (7)C1—C6—H6118.6 (9)
C2—C1—C7122.14 (7)C6—C5—C4118.43 (7)
C6—C1—C7119.53 (7)C6—C5—H5118.4 (10)
C4—C3—C2118.11 (7)C4—C5—H5123.2 (10)
C4—C3—H3121.2 (10)C3—C4—C5122.11 (7)
C2—C3—H3120.6 (10)C3—C4—Cl2118.26 (6)
C3—C2—C1121.73 (7)C5—C4—Cl2119.62 (6)
C3—C2—Cl1116.99 (6)O1—C7—C1123.05 (8)
C1—C2—Cl1121.28 (6)O1—C7—H7121.4 (10)
C5—C6—C1121.30 (7)C1—C7—H7115.5 (10)
C5—C6—H6120.0 (9)
C4—C3—C2—C1−0.72 (12)C1—C6—C5—C4−0.68 (12)
C4—C3—C2—Cl1179.11 (6)C2—C3—C4—C5−0.19 (12)
C6—C1—C2—C30.90 (12)C2—C3—C4—Cl2−179.59 (6)
C7—C1—C2—C3−177.92 (8)C6—C5—C4—C30.88 (12)
C6—C1—C2—Cl1−178.92 (6)C6—C5—C4—Cl2−179.73 (6)
C7—C1—C2—Cl12.26 (11)C2—C1—C7—O1170.86 (9)
C2—C1—C6—C5−0.18 (12)C6—C1—C7—O1−7.94 (13)
C7—C1—C6—C5178.67 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.946 (17)2.533 (17)3.4289 (11)158.0 (14)
C6—H6···O1ii0.950 (19)2.512 (17)3.2774 (11)137.8 (12)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2246).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gawlicka-Chruszcz, A., Zheng, H., Hyacinth, M., Cymborowski, M., Sabat, M. & Minor, W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 545–546.
  • Katagi, T. (1988). J. Agric. Food Chem.36, 344–349.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866. [PubMed]
  • Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • The POV-RAY Team (2004). POV-RAY http://www.povray.org/download/.
  • Wang, S.-X., Tan, Z.-C., Di, Y.-Y., Xu, F., Zhang, H.-T., Sun, L.-X. & Zhang, T. (2004). J. Chem. Thermodyn.36, 393–399.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography