PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m45.
Published online 2009 December 12. doi:  10.1107/S1600536809051150
PMCID: PMC2980255

Aqua­chlorido{μ-6,6′-dieth­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}copper(II)sodium(I) N,N-dimethyl­formamide solvate

Abstract

In the heterometallic dinuclear title compound, [CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO, the CuII ion is coord­inated in a square-planar geometry by two N atoms and two O atoms of the 6,6′-dieth­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolate ligand. The NaI ion is hexa­coordinated by four O atoms of the ligand, defining the equatorial plan, and by one O atom of the water mol­ecule and one Cl atom occuping axial positions. The CuII and NaI ions are bridged by two phenolate O atoms.

Related literature

For related heteronuclear complexes, see: Karlin (1993 [triangle]); Ni et al. (2005 [triangle]). For related structures, see: Bian (2008 [triangle]); Xiao & Zhu (2003 [triangle]). For the synthesis of 6,6′-dieth­yloxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenol and its Cu complex, see: Lo et al. (2004 [triangle]); Sui et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m45-scheme1.jpg

Experimental

Crystal data

  • [CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO
  • M r = 615.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m45-efi1.jpg
  • a = 12.2528 (17) Å
  • b = 19.566 (3) Å
  • c = 12.4901 (17) Å
  • β = 111.653 (2)°
  • V = 2783.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.94 mm−1
  • T = 298 K
  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.872, T max = 0.928
  • 13672 measured reflections
  • 4903 independent reflections
  • 4233 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.092
  • S = 1.07
  • 4903 reflections
  • 354 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051150/is2489sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051150/is2489Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China and the Post-Doctoral Innovation Project of Shandong Province.

supplementary crystallographic information

Comment

Heterometallic complexes have been intensively studied owing to their unique physical and chemical properties (Ni et al., 2005). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). Therefore, investigation of the synthesis and the crystal structures of these heterometallic compounds is necessary in order to further widening the application of the compounds. Herein, a novel heterometallic nuclear (CuIINaI) compound has been obtained by step-by-step method and its structure is depicted.

As shown in Fig.1, the compound I is a dinuclear neutral complex with a planar square configuration. The Cu(II) atom is coordinated in a planar square geometry with the basal square formed by two nitrogen atoms and two oxygen atoms from the 6,6'-diethyloxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolate (L) ligand. The Na(I) atom is coordinated by four oxygen atoms from the ligand, one oxygen atom from water and one chlorine atom. The bond lengths of Cu—O, Cu—N and Na—Cl are normal (Xiao et al., 2003).

Experimental

The H2L ligand and complex CuL was synthesized according to the previous literature (Lo et al., 2004; Sui et al. 2007). The compound I was obtained by allowing the mixure of CuL (0.047 g, 0.1 mmol) and NaCl (0.006 g, 0.1 mmol) being stirred in the DMF solution at room temperature for 1 h, then filtered, suitable brown crystals were obtained via slow evaporation of the filtrate at room temperature (yield: about 45%)

Refinement

All H-atoms bound to the C atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl atoms. The H atoms of the water molecule were contrained, with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[CuNa(C24H22N2O4)Cl(H2O)]·C3H7NOF(000) = 1276
Mr = 615.53Dx = 1.469 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7372 reflections
a = 12.2528 (17) Åθ = 2.3–27.5°
b = 19.566 (3) ŵ = 0.94 mm1
c = 12.4901 (17) ÅT = 298 K
β = 111.653 (2)°Needle, brown
V = 2783.1 (7) Å30.15 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4903 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.0°
[var phi] and ω scansh = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −23→23
Tmin = 0.872, Tmax = 0.928l = −12→14
13672 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.055P)2 + 0.6422P] where P = (Fo2 + 2Fc2)/3
4903 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4298 (3)0.29377 (13)0.0350 (3)0.0753 (8)
H1A0.45920.33900.03310.113*
H1B0.46290.27610.11210.113*
H1C0.34580.29520.01080.113*
C20.4633 (2)0.24849 (10)−0.0442 (2)0.0472 (5)
H2A0.43040.2659−0.12240.057*
H2B0.54800.2467−0.02070.057*
C30.44513 (16)0.13019 (10)−0.09867 (16)0.0350 (4)
C40.51898 (18)0.13645 (11)−0.15763 (17)0.0426 (5)
H40.55110.1789−0.16260.051*
C50.5466 (2)0.07961 (12)−0.21056 (19)0.0488 (5)
H50.59720.0843−0.25020.059*
C60.4997 (2)0.01743 (11)−0.20428 (19)0.0439 (5)
H60.5205−0.0204−0.23770.053*
C70.41968 (17)0.00950 (10)−0.14769 (17)0.0337 (4)
C80.39040 (16)0.06668 (9)−0.09376 (15)0.0314 (4)
C90.37331 (17)−0.05756 (10)−0.14566 (16)0.0352 (4)
H90.4006−0.0926−0.17950.042*
C100.25323 (16)−0.14097 (10)−0.10326 (16)0.0356 (4)
C110.27395 (18)−0.19532 (10)−0.16551 (18)0.0430 (5)
H110.3185−0.1886−0.21090.052*
C120.2284 (2)−0.25866 (11)−0.1596 (2)0.0508 (6)
H120.2427−0.2949−0.20070.061*
C130.1616 (2)−0.26903 (11)−0.0931 (2)0.0522 (6)
H130.1323−0.3124−0.08910.063*
C140.13774 (19)−0.21583 (11)−0.03232 (18)0.0459 (5)
H140.0917−0.22320.01140.055*
C150.18307 (17)−0.15112 (10)−0.03704 (16)0.0363 (4)
C160.09870 (17)−0.09228 (10)0.08093 (17)0.0380 (4)
H160.0617−0.13310.08550.046*
C170.07786 (17)−0.03460 (11)0.14138 (17)0.0385 (4)
C180.00260 (19)−0.04354 (13)0.20363 (18)0.0487 (5)
H18−0.0308−0.08610.20430.058*
C19−0.0213 (2)0.00910 (13)0.2621 (2)0.0526 (6)
H19−0.07070.00210.30250.063*
C200.02749 (19)0.07394 (13)0.26241 (18)0.0483 (5)
H200.01100.10950.30350.058*
C210.09936 (17)0.08496 (11)0.20221 (16)0.0387 (4)
C220.12742 (16)0.03082 (10)0.14010 (16)0.0351 (4)
C230.1425 (2)0.20234 (11)0.26047 (19)0.0492 (5)
H23A0.18260.19170.34140.059*
H23B0.06120.21300.24720.059*
C240.2003 (2)0.26168 (12)0.2272 (2)0.0617 (7)
H24A0.19740.30090.27230.092*
H24B0.15980.27170.14690.092*
H24C0.28060.25050.24090.092*
C250.3559 (3)0.03387 (18)0.4305 (3)0.0904 (11)
H250.39420.00800.39250.108*
C260.3037 (6)−0.0754 (2)0.4803 (5)0.169 (2)
H26A0.2303−0.09270.42740.253*
H26B0.3190−0.09420.55540.253*
H26C0.3657−0.08820.45460.253*
C270.2338 (4)0.0311 (3)0.5408 (3)0.139 (2)
H27A0.28530.04460.61650.208*
H27B0.17470.00080.54680.208*
H27C0.19700.07090.49750.208*
N10.29705 (13)−0.07355 (8)−0.10098 (13)0.0328 (3)
N20.16488 (13)−0.09243 (8)0.02039 (13)0.0346 (4)
N30.2978 (2)−0.00202 (13)0.4854 (2)0.0744 (7)
O10.41778 (13)0.18169 (7)−0.03841 (13)0.0450 (3)
O20.31963 (12)0.06507 (7)−0.03795 (12)0.0401 (3)
O30.19590 (12)0.04606 (7)0.08560 (12)0.0410 (3)
O40.14894 (13)0.14563 (7)0.19102 (12)0.0466 (4)
O50.43276 (14)0.15357 (8)0.24781 (14)0.0584 (4)
H5A0.47870.18780.26150.088*
H5B0.42250.14370.30970.088*
O60.3640 (2)0.09160 (14)0.4248 (2)0.1041 (8)
Cu10.243871 (19)−0.012818 (12)−0.008330 (19)0.03398 (10)
Na10.27089 (7)0.15365 (4)0.06022 (7)0.0437 (2)
Cl10.10362 (6)0.23100 (3)−0.10680 (6)0.06409 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.084 (2)0.0393 (14)0.112 (2)−0.0106 (13)0.0475 (18)−0.0153 (14)
C20.0468 (12)0.0323 (11)0.0554 (13)−0.0061 (9)0.0103 (10)0.0059 (9)
C30.0335 (10)0.0338 (10)0.0367 (10)0.0046 (8)0.0116 (8)0.0060 (8)
C40.0426 (11)0.0420 (11)0.0472 (11)−0.0018 (9)0.0211 (9)0.0092 (9)
C50.0515 (13)0.0535 (14)0.0535 (13)−0.0004 (11)0.0335 (11)0.0037 (10)
C60.0482 (12)0.0449 (12)0.0468 (12)0.0051 (10)0.0273 (10)−0.0013 (9)
C70.0338 (10)0.0343 (10)0.0327 (10)0.0048 (8)0.0119 (8)0.0035 (8)
C80.0301 (9)0.0321 (10)0.0327 (9)0.0031 (8)0.0125 (8)0.0043 (8)
C90.0373 (10)0.0332 (10)0.0346 (10)0.0057 (8)0.0126 (8)−0.0010 (8)
C100.0321 (10)0.0312 (10)0.0365 (10)0.0016 (8)0.0046 (8)−0.0003 (8)
C110.0410 (11)0.0382 (11)0.0438 (11)0.0034 (9)0.0088 (9)−0.0067 (9)
C120.0501 (13)0.0339 (11)0.0555 (13)0.0027 (10)0.0042 (11)−0.0101 (10)
C130.0553 (14)0.0308 (11)0.0575 (14)−0.0068 (10)0.0056 (11)−0.0018 (10)
C140.0453 (12)0.0382 (12)0.0480 (12)−0.0072 (9)0.0100 (10)0.0025 (9)
C150.0347 (10)0.0307 (10)0.0365 (10)−0.0019 (8)0.0049 (8)0.0011 (8)
C160.0333 (10)0.0369 (11)0.0423 (11)−0.0063 (8)0.0121 (9)0.0054 (8)
C170.0318 (10)0.0471 (12)0.0360 (10)−0.0022 (9)0.0117 (8)0.0031 (9)
C180.0420 (12)0.0627 (15)0.0455 (12)−0.0087 (11)0.0208 (10)0.0049 (11)
C190.0457 (13)0.0757 (17)0.0469 (13)−0.0026 (12)0.0295 (11)0.0030 (11)
C200.0421 (12)0.0668 (15)0.0392 (11)0.0066 (11)0.0188 (9)−0.0046 (10)
C210.0335 (10)0.0485 (12)0.0345 (10)0.0044 (9)0.0129 (8)0.0000 (9)
C220.0306 (10)0.0414 (11)0.0327 (10)0.0015 (8)0.0107 (8)0.0013 (8)
C230.0512 (13)0.0496 (13)0.0485 (12)0.0094 (10)0.0202 (10)−0.0140 (10)
C240.0727 (17)0.0460 (14)0.0739 (16)0.0052 (12)0.0359 (14)−0.0157 (12)
C250.100 (3)0.063 (2)0.086 (2)−0.0051 (19)0.010 (2)−0.0020 (17)
C260.197 (5)0.077 (3)0.176 (5)−0.047 (3)0.004 (4)0.027 (3)
C270.088 (3)0.255 (6)0.069 (2)0.035 (4)0.024 (2)0.023 (3)
N10.0344 (8)0.0278 (8)0.0354 (8)0.0014 (6)0.0119 (7)−0.0012 (6)
N20.0334 (8)0.0309 (8)0.0380 (9)−0.0028 (7)0.0114 (7)0.0009 (7)
N30.0758 (17)0.0785 (17)0.0646 (15)−0.0128 (13)0.0209 (13)0.0074 (12)
O10.0520 (9)0.0299 (7)0.0622 (9)−0.0036 (6)0.0318 (7)−0.0011 (6)
O20.0459 (8)0.0293 (7)0.0566 (8)−0.0021 (6)0.0323 (7)−0.0029 (6)
O30.0459 (8)0.0350 (7)0.0535 (8)−0.0052 (6)0.0316 (7)−0.0077 (6)
O40.0569 (9)0.0404 (8)0.0520 (9)0.0023 (7)0.0311 (7)−0.0096 (6)
O50.0619 (10)0.0516 (10)0.0621 (10)−0.0085 (8)0.0234 (8)−0.0081 (8)
O60.114 (2)0.0975 (19)0.1034 (18)−0.0205 (16)0.0428 (15)0.0090 (15)
Cu10.03799 (16)0.02756 (15)0.04243 (16)−0.00246 (9)0.02191 (12)−0.00293 (9)
Na10.0476 (5)0.0339 (4)0.0542 (5)0.0006 (3)0.0243 (4)−0.0038 (4)
Cl10.0566 (4)0.0601 (4)0.0712 (4)0.0090 (3)0.0184 (3)0.0195 (3)

Geometric parameters (Å, °)

C1—C21.494 (4)C18—H180.9300
C1—H1A0.9600C19—C201.402 (3)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—C211.370 (3)
C2—O11.433 (2)C20—H200.9300
C2—H2A0.9700C21—O41.364 (3)
C2—H2B0.9700C21—C221.428 (3)
C3—C41.367 (3)C22—O31.295 (2)
C3—O11.371 (2)C23—O41.428 (2)
C3—C81.424 (3)C23—C241.496 (3)
C4—C51.397 (3)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
C5—C61.360 (3)C24—H24A0.9600
C5—H50.9300C24—H24B0.9600
C6—C71.412 (3)C24—H24C0.9600
C6—H60.9300C25—O61.138 (4)
C7—C81.419 (3)C25—N31.353 (5)
C7—C91.434 (3)C25—H250.9300
C8—O21.298 (2)C26—N31.440 (5)
C9—N11.291 (3)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C10—C111.395 (3)C26—H26C0.9600
C10—C151.410 (3)C27—N31.384 (6)
C10—N11.420 (2)C27—H27A0.9600
C11—C121.372 (3)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C12—C131.379 (4)N1—Cu11.9320 (15)
C12—H120.9300N2—Cu11.9360 (15)
C13—C141.382 (3)O1—Na12.5874 (16)
C13—H130.9300O2—Cu11.8907 (13)
C14—C151.393 (3)O2—Na12.3247 (15)
C14—H140.9300O3—Cu11.8862 (13)
C15—N21.414 (3)O3—Na12.3646 (16)
C16—N21.297 (3)O4—Na12.5938 (16)
C16—C171.432 (3)O5—Na12.4483 (18)
C16—H160.9300O5—H5A0.8500
C17—C181.419 (3)O5—H5B0.8499
C17—C221.419 (3)Cu1—Na13.3529 (9)
C18—C191.355 (3)Na1—Cl12.7726 (10)
C2—C1—H1A109.5H23A—C23—H23B108.5
C2—C1—H1B109.5C23—C24—H24A109.5
H1A—C1—H1B109.5C23—C24—H24B109.5
C2—C1—H1C109.5H24A—C24—H24B109.5
H1A—C1—H1C109.5C23—C24—H24C109.5
H1B—C1—H1C109.5H24A—C24—H24C109.5
O1—C2—C1107.50 (19)H24B—C24—H24C109.5
O1—C2—H2A110.2O6—C25—N3128.4 (4)
C1—C2—H2A110.2O6—C25—H25115.8
O1—C2—H2B110.2N3—C25—H25115.8
C1—C2—H2B110.2N3—C26—H26A109.5
H2A—C2—H2B108.5N3—C26—H26B109.5
C4—C3—O1125.06 (18)H26A—C26—H26B109.5
C4—C3—C8121.16 (18)N3—C26—H26C109.5
O1—C3—C8113.78 (16)H26A—C26—H26C109.5
C3—C4—C5120.48 (19)H26B—C26—H26C109.5
C3—C4—H4119.8N3—C27—H27A109.5
C5—C4—H4119.8N3—C27—H27B109.5
C6—C5—C4120.24 (19)H27A—C27—H27B109.5
C6—C5—H5119.9N3—C27—H27C109.5
C4—C5—H5119.9H27A—C27—H27C109.5
C5—C6—C7120.9 (2)H27B—C27—H27C109.5
C5—C6—H6119.6C9—N1—C10123.02 (16)
C7—C6—H6119.6C9—N1—Cu1124.58 (13)
C6—C7—C8119.65 (18)C10—N1—Cu1112.00 (12)
C6—C7—C9117.51 (18)C16—N2—C15123.16 (17)
C8—C7—C9122.82 (18)C16—N2—Cu1124.68 (14)
O2—C8—C7124.89 (17)C15—N2—Cu1112.10 (12)
O2—C8—C3117.57 (16)C25—N3—C27120.8 (4)
C7—C8—C3117.52 (17)C25—N3—C26116.8 (4)
N1—C9—C7125.74 (18)C27—N3—C26122.4 (4)
N1—C9—H9117.1C3—O1—C2117.65 (16)
C7—C9—H9117.1C3—O1—Na1117.35 (11)
C11—C10—C15119.70 (18)C2—O1—Na1124.69 (12)
C11—C10—N1125.02 (19)C8—O2—Cu1126.74 (12)
C15—C10—N1115.27 (16)C8—O2—Na1128.15 (12)
C12—C11—C10119.8 (2)Cu1—O2—Na1104.92 (6)
C12—C11—H11120.1C22—O3—Cu1126.68 (13)
C10—C11—H11120.1C22—O3—Na1129.38 (12)
C11—C12—C13120.6 (2)Cu1—O3—Na1103.57 (6)
C11—C12—H12119.7C21—O4—C23119.18 (16)
C13—C12—H12119.7C21—O4—Na1119.93 (11)
C12—C13—C14120.9 (2)C23—O4—Na1120.61 (13)
C12—C13—H13119.6Na1—O5—H5A115.8
C14—C13—H13119.6Na1—O5—H5B122.1
C13—C14—C15119.5 (2)H5A—O5—H5B107.7
C13—C14—H14120.2O3—Cu1—O285.28 (6)
C15—C14—H14120.2O3—Cu1—N1178.41 (6)
C14—C15—C10119.47 (19)O2—Cu1—N194.59 (6)
C14—C15—N2125.23 (19)O3—Cu1—N294.84 (6)
C10—C15—N2115.30 (16)O2—Cu1—N2179.37 (7)
N2—C16—C17125.50 (18)N1—Cu1—N285.31 (7)
N2—C16—H16117.2O3—Cu1—Na143.28 (4)
C17—C16—H16117.2O2—Cu1—Na142.07 (4)
C18—C17—C22119.0 (2)N1—Cu1—Na1136.65 (5)
C18—C17—C16118.03 (19)N2—Cu1—Na1138.01 (5)
C22—C17—C16122.98 (18)O2—Na1—O366.12 (5)
C19—C18—C17121.0 (2)O2—Na1—O5103.25 (6)
C19—C18—H18119.5O3—Na1—O595.10 (6)
C17—C18—H18119.5O2—Na1—O163.11 (5)
C18—C19—C20120.9 (2)O3—Na1—O1128.73 (5)
C18—C19—H19119.6O5—Na1—O189.74 (6)
C20—C19—H19119.6O2—Na1—O4127.37 (6)
C21—C20—C19120.0 (2)O3—Na1—O461.25 (5)
C21—C20—H20120.0O5—Na1—O481.30 (6)
C19—C20—H20120.0O1—Na1—O4167.51 (6)
O4—C21—C20126.45 (19)O2—Na1—Cl1105.82 (5)
O4—C21—C22112.61 (16)O3—Na1—Cl1111.77 (5)
C20—C21—C22120.9 (2)O5—Na1—Cl1146.43 (5)
O3—C22—C17125.19 (18)O1—Na1—Cl188.68 (4)
O3—C22—C21116.57 (18)O4—Na1—Cl193.97 (5)
C17—C22—C21118.24 (18)O2—Na1—Cu133.02 (3)
O4—C23—C24107.24 (18)O3—Na1—Cu133.15 (3)
O4—C23—H23A110.3O5—Na1—Cu1102.27 (4)
C24—C23—H23A110.3O1—Na1—Cu196.02 (4)
O4—C23—H23B110.3O4—Na1—Cu194.39 (4)
C24—C23—H23B110.3Cl1—Na1—Cu1111.24 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2489).

References

  • Bian, J. (2008). Acta Cryst. E64, m625. [PMC free article] [PubMed]
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Karlin, K. D. (1993). Science, 261, 701–708. [PubMed]
  • Lo, W. K., Wong, W. K., Guo, J., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510–4521.
  • Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem.44, 2050–2059. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277–m2278.
  • Xiao, H.-P. & Zhu, L.-G. (2003). Acta Cryst. E59, m964–m966.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography