PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o216.
Published online 2009 December 19. doi:  10.1107/S1600536809054257
PMCID: PMC2980252

1-Bromo-2,7-di-tert-butyl­pyrene

Abstract

In the title mol­ecule, C24H25Br, one of two tert-butyl groups is rotationally disordered between two orientations in a 0.59 (3):0.41 (3) ratio. The crystal packing exhibits no π–π inter­actions; however, relatively short inter­molecular Br(...)Br contacts of 3.654 (1) Å are observed.

Related literature

For the synthesis, see: Yamato et al. (1997 [triangle]). For a related structure, see: Hazell & Lomborg (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o216-scheme1.jpg

Experimental

Crystal data

  • C24H25Br
  • M r = 393.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o216-efi1.jpg
  • a = 21.4678 (4) Å
  • b = 14.5221 (2) Å
  • c = 6.2436 (1) Å
  • V = 1946.49 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.12 mm−1
  • T = 293 K
  • 0.32 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.643, T max = 0.651
  • 15786 measured reflections
  • 4402 independent reflections
  • 2741 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.090
  • wR(F 2) = 0.281
  • S = 1.00
  • 4402 reflections
  • 263 parameters
  • 67 restraints
  • H-atom parameters constrained
  • Δρmax = 1.01 e Å−3
  • Δρmin = −0.84 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1930 Friedel pairs
  • Flack parameter: 0.05 (3)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054257/cv2677sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054257/cv2677Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Shandong Key Scientific and Technological Project (grant No. 2008 GG30002014)

supplementary crystallographic information

Comment

Pyrene and its derivatives are often used as fluorescent chromophores. Normally, the electrophilic substitution of pyrene occurred at positions 1, 3, 6 or 8 position, but not at other positions (2,4,5,7,9 and 10). However, the orientation in friedel-crafts tert-butylation of pyrene have been proved at positions 2 and 7. Yamato and co workers had reported that the bromination of 2,7-di-tert-butylpyrene with 1 mol equiv of bromine in carbon tetrachloride solution afford 1-bromo-2,7-di-tert-butylpyrene in high yield (Yamato et al., 1997). However, no crystal data were given as a proof. Herein, we report the crystal structure of 1-bromo-2,7-di-tert-butylpyrene, (I), which support the conclusion of Yamato.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those reported for close compound (Hazell et al., 1972). One of two tert-butyl groups (attached to pyrene at position 7) is rotationally disordered between two orientations in a ratio 0.59 (3):0.41 (3). The crystal packing exhibits no π-π interactions, however, relatively short intermolecular Br···Br contacts of 3.654 (1) are observed.

Experimental

The title compound was synthesized by the bromination of 2,7-di-tert-butylpyrene. To a solution of 2,7-di-tert-butylpyrene(314 mg, 1.0 mmol) in 30 ml CCl4, a solution of Br2 (200 mg, 1.1 mmol) in 10 ml CCl4 was added at 0°C. After the reaction mixture had been stirred for 1 h at room temperature, it was poured into water and the organic layer was extracted with CH2Cl2 and washed with solution of sodium thiosulfate and water, dried over MgSO4 and concentrated. The residue was purified by silica gel column chromatography with hexane as eluent t o afford a solid. Recrystallization from ethanol gave the 1-bromo-2,7-di-tert-butylpyrene(yield: 290 mg, 75%) as colorless prism crystals.

Refinement

All H atoms were geometrically fixed and allowed to ride on their attached atoms, which C—H = 0.93 Å and Uiso(H)= 1.2 Ueq(C) for the H-atom bonded to thiophene ring, N—H= 0.86Å and Uiso(H)= 1.2 Ueq(C) and the other C—H = 0.93 Å and Uiso(H)= 1.5 Ueq(C). Tert-butyl group (attached to C20) is disordered between two orientations. Three methyl groups - C22, C23, C24 - were refined to a rigid model around the bond C20—C21 with methyl groups C22', C23' and C24', with the occupancies refined to 0.41 (3) and 0.59 (3), respectively.

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Only major parts of disordered atoms are shown. H atoms omitted for clarity.

Crystal data

C24H25BrF(000) = 816
Mr = 393.35Dx = 1.342 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3661 reflections
a = 21.4678 (4) Åθ = 2.8–21.3°
b = 14.5221 (2) ŵ = 2.12 mm1
c = 6.2436 (1) ÅT = 293 K
V = 1946.49 (5) Å3Prism, colourless
Z = 40.32 × 0.21 × 0.13 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4402 independent reflections
Radiation source: fine-focus sealed tube2741 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (APEX2; Bruker, 2005)h = −25→27
Tmin = 0.643, Tmax = 0.651k = −18→18
15786 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.281w = 1/[σ2(Fo2) + (0.1998P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4402 reflectionsΔρmax = 1.01 e Å3
263 parametersΔρmin = −0.84 e Å3
67 restraintsAbsolute structure: Flack (1983), 1930 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.70576 (5)0.22447 (6)0.7036 (4)0.0927 (5)
C10.5691 (4)0.0248 (5)0.2951 (17)0.080 (2)
H1A0.58610.01220.15590.119*
H1B0.53180.06050.28020.119*
H1C0.5596−0.03220.36590.119*
C20.5941 (4)0.0721 (5)0.6628 (15)0.078 (2)
H2A0.58540.00880.69600.116*
H2B0.55680.10780.67900.116*
H2C0.62550.09500.75830.116*
C30.6796 (4)0.0348 (5)0.386 (2)0.090 (3)
H3A0.71200.06900.45600.134*
H3B0.68720.03420.23400.134*
H3C0.6793−0.02730.43850.134*
C40.6175 (3)0.0794 (4)0.4297 (12)0.0541 (16)
C50.6193 (3)0.1826 (4)0.3626 (10)0.0430 (13)
C60.6535 (3)0.2502 (4)0.4644 (11)0.0481 (15)
C70.6560 (3)0.3424 (4)0.3944 (11)0.0445 (13)
C80.5863 (3)0.2102 (4)0.1850 (14)0.0542 (16)
H80.56320.16570.11310.065*
C90.5847 (3)0.2997 (4)0.1046 (11)0.0470 (14)
C100.6206 (2)0.3676 (4)0.2096 (10)0.0412 (12)
C110.6917 (3)0.4127 (5)0.4975 (12)0.0518 (16)
H110.71520.39760.61770.062*
C120.6924 (3)0.5025 (5)0.4239 (12)0.0534 (16)
H120.71520.54710.49670.064*
C130.6581 (3)0.5270 (4)0.2360 (11)0.0444 (13)
C140.6213 (3)0.4595 (4)0.1356 (9)0.0412 (12)
C150.5488 (4)0.3282 (5)−0.0776 (13)0.070 (2)
H150.52430.2850−0.14800.084*
C160.5495 (4)0.4147 (5)−0.1491 (14)0.068 (2)
H160.52600.4293−0.26960.081*
C170.5850 (3)0.4861 (5)−0.0475 (11)0.0513 (15)
C180.5874 (3)0.5748 (4)−0.1191 (11)0.0519 (15)
H180.56380.5904−0.23860.062*
C190.6590 (3)0.6164 (4)0.1567 (11)0.0503 (14)
H190.68400.65990.22440.060*
C200.6236 (3)0.6438 (4)−0.0222 (11)0.0502 (15)
C210.6244 (3)0.7430 (5)−0.1038 (9)0.0588 (18)
C220.6781 (6)0.7999 (9)−0.009 (3)0.067 (5)0.59 (3)
H22A0.67050.81070.14000.100*0.59 (3)
H22B0.68090.8577−0.08320.100*0.59 (3)
H22C0.71650.7667−0.02610.100*0.59 (3)
C230.5639 (5)0.7879 (9)−0.031 (3)0.064 (4)0.59 (3)
H23A0.52980.7466−0.05580.096*0.59 (3)
H23B0.55730.8438−0.10960.096*0.59 (3)
H23C0.56640.80170.11940.096*0.59 (3)
C240.6287 (9)0.7500 (11)−0.3457 (14)0.073 (5)0.59 (3)
H24A0.66560.7191−0.39420.109*0.59 (3)
H24B0.63050.8137−0.38680.109*0.59 (3)
H24C0.59270.7218−0.40920.109*0.59 (3)
C22'0.6879 (9)0.790 (3)−0.103 (6)0.20 (3)0.41 (3)
H22D0.71750.7511−0.03050.299*0.41 (3)
H22E0.68500.8477−0.03000.299*0.41 (3)
H22F0.70140.7997−0.24770.299*0.41 (3)
C23'0.5813 (12)0.7978 (15)0.043 (3)0.070 (7)0.41 (3)
H23D0.54190.76690.05410.106*0.41 (3)
H23E0.57510.8583−0.01490.106*0.41 (3)
H23F0.59980.80250.18280.106*0.41 (3)
C24'0.5979 (14)0.7505 (15)−0.331 (2)0.073 (7)0.41 (3)
H24D0.61860.7072−0.42240.110*0.41 (3)
H24E0.60440.8118−0.38410.110*0.41 (3)
H24F0.55410.7374−0.32800.110*0.41 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1018 (8)0.0731 (6)0.1033 (8)−0.0084 (4)−0.0434 (7)0.0225 (5)
C10.100 (6)0.045 (4)0.094 (6)−0.017 (4)−0.011 (5)−0.001 (4)
C20.104 (6)0.059 (4)0.070 (5)−0.016 (4)0.009 (5)0.023 (4)
C30.070 (5)0.044 (4)0.155 (10)0.013 (4)0.019 (6)0.014 (5)
C40.062 (4)0.038 (3)0.062 (4)−0.003 (3)0.006 (3)0.007 (3)
C50.047 (3)0.043 (3)0.039 (3)−0.005 (2)0.002 (3)0.005 (2)
C60.052 (3)0.042 (3)0.050 (4)0.006 (3)−0.012 (3)0.006 (3)
C70.045 (3)0.039 (3)0.049 (3)0.006 (2)−0.002 (3)0.007 (3)
C80.070 (4)0.039 (3)0.054 (4)−0.008 (3)0.009 (4)0.005 (3)
C90.054 (3)0.042 (3)0.045 (3)0.000 (3)−0.009 (3)−0.002 (3)
C100.042 (3)0.041 (3)0.041 (3)0.007 (2)−0.002 (2)−0.005 (3)
C110.063 (4)0.042 (3)0.051 (4)−0.002 (3)−0.022 (3)0.004 (3)
C120.065 (4)0.043 (3)0.053 (4)0.001 (3)−0.013 (3)−0.003 (3)
C130.045 (3)0.039 (3)0.049 (3)0.007 (2)−0.002 (3)−0.005 (3)
C140.046 (3)0.043 (3)0.035 (3)0.006 (2)0.004 (2)0.000 (2)
C150.100 (6)0.061 (4)0.050 (4)−0.018 (4)−0.027 (4)−0.002 (4)
C160.081 (5)0.059 (4)0.062 (4)−0.008 (4)−0.032 (4)0.004 (3)
C170.054 (4)0.056 (4)0.045 (3)0.004 (3)−0.006 (3)0.002 (3)
C180.056 (4)0.050 (4)0.050 (4)0.009 (3)−0.006 (3)0.010 (3)
C190.057 (3)0.037 (3)0.057 (4)0.002 (2)0.006 (3)0.001 (3)
C200.055 (4)0.048 (3)0.048 (4)0.011 (3)0.011 (3)0.003 (3)
C210.074 (5)0.037 (3)0.065 (5)0.006 (3)0.009 (4)0.002 (3)
C220.067 (6)0.060 (6)0.073 (6)−0.006 (4)−0.002 (4)0.007 (4)
C230.061 (5)0.061 (5)0.070 (6)0.003 (4)−0.005 (4)0.003 (4)
C240.079 (6)0.069 (6)0.071 (6)−0.007 (4)0.009 (4)0.002 (4)
C22'0.20 (3)0.20 (3)0.20 (3)0.000 (5)0.000 (5)0.002 (5)
C23'0.074 (8)0.068 (8)0.070 (8)0.000 (5)−0.001 (5)0.000 (5)
C24'0.077 (8)0.071 (7)0.071 (8)−0.001 (5)0.004 (5)0.008 (5)

Geometric parameters (Å, °)

Br1—C61.905 (6)C16—C171.435 (10)
C1—C41.553 (11)C16—H160.9300
C1—H1A0.9600C17—C181.363 (9)
C1—H1B0.9600C18—C201.405 (10)
C1—H1C0.9600C18—H180.9300
C2—C41.543 (12)C19—C201.409 (10)
C2—H2A0.9600C19—H190.9300
C2—H2B0.9600C20—C211.529 (9)
C2—H2C0.9600C21—C241.516 (9)
C3—C41.509 (10)C21—C231.524 (8)
C3—H3A0.9600C21—C22'1.524 (9)
C3—H3B0.9600C21—C23'1.526 (9)
C3—H3C0.9600C21—C24'1.530 (9)
C4—C51.556 (9)C21—C221.536 (8)
C5—C81.376 (10)C22—H22A0.9600
C5—C61.382 (9)C22—H22B0.9600
C6—C71.409 (8)C22—H22C0.9600
C7—C111.430 (9)C23—H23A0.9600
C7—C101.430 (9)C23—H23B0.9600
C8—C91.394 (9)C23—H23C0.9600
C8—H80.9300C24—H24A0.9600
C9—C101.412 (8)C24—H24B0.9600
C9—C151.436 (10)C24—H24C0.9600
C10—C141.413 (8)C22'—H22D0.9600
C11—C121.383 (10)C22'—H22E0.9600
C11—H110.9300C22'—H22F0.9600
C12—C131.431 (10)C23'—H23D0.9600
C12—H120.9300C23'—H23E0.9600
C13—C191.390 (8)C23'—H23F0.9600
C13—C141.407 (8)C24'—H24D0.9600
C14—C171.437 (9)C24'—H24E0.9600
C15—C161.333 (11)C24'—H24F0.9600
C15—H150.9300
C4—C1—H1A109.5C18—C17—C16123.9 (6)
C4—C1—H1B109.5C18—C17—C14119.6 (6)
H1A—C1—H1B109.5C16—C17—C14116.4 (6)
C4—C1—H1C109.5C17—C18—C20123.6 (6)
H1A—C1—H1C109.5C17—C18—H18118.2
H1B—C1—H1C109.5C20—C18—H18118.2
C4—C2—H2A109.5C13—C19—C20122.5 (6)
C4—C2—H2B109.5C13—C19—H19118.7
H2A—C2—H2B109.5C20—C19—H19118.7
C4—C2—H2C109.5C18—C20—C19116.1 (6)
H2A—C2—H2C109.5C18—C20—C21122.3 (6)
H2B—C2—H2C109.5C19—C20—C21121.6 (6)
C4—C3—H3A109.5C24—C21—C23108.8 (6)
C4—C3—H3B109.5C24—C21—C22'85.3 (11)
H3A—C3—H3B109.5C23—C21—C22'124.9 (16)
C4—C3—H3C109.5C24—C21—C23'126.9 (11)
H3A—C3—H3C109.5C23—C21—C23'23.1 (9)
H3B—C3—H3C109.5C22'—C21—C23'108.0 (8)
C3—C4—C2115.5 (8)C24—C21—C20113.3 (8)
C3—C4—C1105.8 (7)C23—C21—C20107.2 (7)
C2—C4—C1104.9 (7)C22'—C21—C20115.3 (16)
C3—C4—C5110.0 (6)C23'—C21—C20106.5 (10)
C2—C4—C5109.2 (6)C24—C21—C24'25.3 (8)
C1—C4—C5111.3 (6)C23—C21—C24'86.0 (9)
C8—C5—C6116.0 (5)C22'—C21—C24'107.7 (8)
C8—C5—C4119.0 (5)C23'—C21—C24'107.1 (7)
C6—C5—C4125.0 (6)C20—C21—C24'111.8 (10)
C5—C6—C7123.6 (6)C24—C21—C22107.4 (6)
C5—C6—Br1122.3 (5)C23—C21—C22107.1 (6)
C7—C6—Br1114.0 (5)C22'—C21—C2224.1 (11)
C6—C7—C11124.0 (6)C23'—C21—C2286.8 (11)
C6—C7—C10118.2 (5)C20—C21—C22112.8 (7)
C11—C7—C10117.8 (5)C24'—C21—C22126.5 (11)
C5—C8—C9125.0 (6)C21—C22—H22A109.5
C5—C8—H8117.5C21—C22—H22B109.5
C9—C8—H8117.5C21—C22—H22C109.5
C8—C9—C10118.1 (6)C21—C23—H23A109.5
C8—C9—C15124.6 (6)C21—C23—H23B109.5
C10—C9—C15117.3 (6)C21—C23—H23C109.5
C9—C10—C14120.9 (5)C21—C24—H24A109.5
C9—C10—C7119.1 (5)C21—C24—H24B109.5
C14—C10—C7120.0 (5)C21—C24—H24C109.5
C12—C11—C7122.0 (6)C21—C22'—H22D109.5
C12—C11—H11119.0C21—C22'—H22E109.5
C7—C11—H11119.0H22D—C22'—H22E109.5
C11—C12—C13120.1 (6)C21—C22'—H22F109.5
C11—C12—H12119.9H22D—C22'—H22F109.5
C13—C12—H12119.9H22E—C22'—H22F109.5
C19—C13—C14120.1 (6)C21—C23'—H23D109.5
C19—C13—C12121.1 (6)C21—C23'—H23E109.5
C14—C13—C12118.8 (5)H23D—C23'—H23E109.5
C13—C14—C10121.2 (5)C21—C23'—H23F109.5
C13—C14—C17118.1 (5)H23D—C23'—H23F109.5
C10—C14—C17120.6 (5)H23E—C23'—H23F109.5
C16—C15—C9122.1 (7)C21—C24'—H24D109.5
C16—C15—H15118.9C21—C24'—H24E109.5
C9—C15—H15118.9H24D—C24'—H24E109.5
C15—C16—C17122.6 (7)C21—C24'—H24F109.5
C15—C16—H16118.7H24D—C24'—H24F109.5
C17—C16—H16118.7H24E—C24'—H24F109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2677).

References

  • Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst.32, 339–340.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hazell, A. C. & Lomborg, J. G. (1972). Acta Cryst. B28, 1059–1064.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Yamato, T., Fujimoto, M., Miyazawa, A. & Matsuo, K. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1201–1207.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography