PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m2.
Published online 2009 December 4. doi:  10.1107/S1600536809051599
PMCID: PMC2980247

catena-Poly[[diazido­zinc(II)]-μ-di-4-pyridylamine-κ2 N:N′]

Abstract

In the title compound, [Zn(N3)2(C10H9N3)]n, tetra­hedrally coordinated ZnII ions with two monodentate azide ligands are linked into zigzag one-dimensional chain motifs by di-4-pyridylamine (dpa) tethers. Individual [Zn(N3)2(dpa)]n chains are connected into supra­molecular layers via N—H(...)N hydrogen bonding between the central amine groups of the dpa ligands and terminal unligated azide N atoms. The azide ligands in one supra­molecular layer penetrate through the neighboring layers above and below, allowing stacking into a three-dimensional structure.

Related literature

For other coordination polymers containing dpa ligands, see: LaDuca (2009 [triangle]). For the preparation of dpa, see: Zapf et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-000m2-scheme1.jpg

Experimental

Crystal data

  • [Zn(N3)2(C10H9N3)]
  • M r = 320.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-000m2-efi4.jpg
  • a = 6.7988 (2) Å
  • b = 16.0105 (5) Å
  • c = 11.7733 (4) Å
  • β = 99.904 (1)°
  • V = 1262.45 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.95 mm−1
  • T = 173 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.628, T max = 0.745
  • 11312 measured reflections
  • 2306 independent reflections
  • 2186 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.056
  • S = 1.11
  • 2306 reflections
  • 184 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051599/zl2257sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051599/zl2257Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

In recent years we have been exploring the use of di-4-pyridylamine (dpa) as a neutral dipodal tethering ligand for the construction of divalent metal coordination polymers (LaDuca, 2009). This chemistry was extended into a system with azido ligands, with the synthesis and characterization of a divalent zinc coordination polymer, [Zn(N3)2(dpa)]n.

The asymmetric unit of the title compound contains a ZnII ion, two azido ligands, and one dpa moiety (Fig. 1). Distorted tetrahedral [ZnN4] coordination is observed, with two N donors from two monodentate azido ligands and two pyridyl N donors from two different dpa ligands. The dpa ligands link the ZnII ions into zigzag [Zn(N3)2(dpa)]n one-dimensional coordination polymer chains (Fig. 2), which are oriented parallel to the b crystal direction.

Individual [Zn(N3)2(dpa)]n chains are connected into supramolecular layers via N—H···N hydrogen bonding between the central amine groups of the dpa ligands and terminal unligated azide N atoms (Fig. 3). These layers stack to form the three-dimensional crystal structure of the title compound, with their pendant azido ligands penetrating through the layer above and the layer below (Fig. 4).

Experimental

All starting materials were obtained commercially, except for dpa, which was prepared by a published procedure (Zapf et al., 1998). Zinc nitrate hexahydrate (30 mg, 0.10 mmol) was dissolved in 3 mL H2O in a glass vial. A solution of sodium azide (13 mg, 0.20 mmol) in 1.5 mL tetrahydrofuran was carefully layered on top of the aqueous solution, followed by a solution of dpa (17 mg, 0.10 mmol) in 1.5 mL methanol. The reaction mixture was allowed to stand undisturbed at 293 K for 14 days, whereupon colourless crystals of the title compound (23 mg, 72% yield) had precipitated.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom bound to the dpa amine N atom was found in a difference Fourier map, and refined with Uiso = 1.2Ueq(N).

Figures

Fig. 1.
The coordination environment of the title compound, showing 50% probability ellipsoids and the atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: grey Zn, light blue N, black C. Symmetry code: (i) -x + 3/2, y -1/2, -z ...
Fig. 2.
A single [Zn(N3)2(dpa)]n chain.
Fig. 3.
Supramolecular layer of [Zn(N3)2(dpa)]n chains. N—H···N hydrogen bonding is shown as dashed lines.
Fig. 4.
Stacking of supramolecular layers in the title compound.

Crystal data

[Zn(N3)2(C10H9N3)]F(000) = 648
Mr = 320.63Dx = 1.687 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11312 reflections
a = 6.7988 (2) Åθ = 2.2–25.4°
b = 16.0105 (5) ŵ = 1.95 mm1
c = 11.7733 (4) ÅT = 173 K
β = 99.904 (1)°Block, colourless
V = 1262.45 (7) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker APEXII diffractometer2306 independent reflections
Radiation source: fine-focus sealed tube2186 reflections with I > 2σ(I)
graphiteRint = 0.021
ω/[var phi] scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.628, Tmax = 0.745k = −19→19
11312 measured reflectionsl = −12→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4475P] where P = (Fo2 + 2Fc2)/3
2306 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.18762 (2)0.669988 (11)0.844834 (15)0.02285 (8)
N1−0.0205 (2)0.72140 (9)0.72917 (12)0.0298 (3)
N2−0.1690 (2)0.68678 (9)0.68471 (13)0.0300 (3)
N3−0.3142 (3)0.65531 (12)0.64086 (16)0.0514 (5)
N40.1421 (2)0.63906 (9)0.99828 (12)0.0313 (3)
N5−0.0053 (2)0.60474 (8)1.01875 (11)0.0282 (3)
N6−0.1423 (2)0.57318 (10)1.04586 (15)0.0408 (4)
N70.41836 (19)0.75077 (8)0.87138 (11)0.0243 (3)
N80.9592 (2)0.88055 (8)0.91029 (12)0.0250 (3)
H8N1.029 (3)0.8687 (12)0.9705 (17)0.030*
N91.20751 (19)1.06963 (8)0.73394 (11)0.0244 (3)
C10.5713 (2)0.73558 (10)0.95831 (14)0.0269 (3)
H10.55540.69451.01190.032*
C20.7489 (2)0.77786 (10)0.97125 (14)0.0261 (3)
H20.85070.76511.03220.031*
C30.7764 (2)0.84063 (9)0.89209 (14)0.0225 (3)
C40.6151 (2)0.85951 (10)0.80644 (14)0.0258 (3)
H40.62320.90300.75510.031*
C50.4424 (2)0.81284 (10)0.79843 (14)0.0250 (3)
H50.33710.82510.73930.030*
C61.0598 (2)1.02151 (10)0.67845 (14)0.0273 (3)
H61.01411.03220.60070.033*
C70.9715 (2)0.95715 (10)0.72946 (14)0.0269 (3)
H70.87110.92510.68670.032*
C81.0360 (2)0.94115 (9)0.84654 (13)0.0229 (3)
C91.1960 (2)0.98884 (10)0.90319 (14)0.0245 (3)
H91.24840.97820.98010.029*
C101.2754 (2)1.05127 (10)0.84526 (14)0.0252 (3)
H101.38111.08230.88480.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01842 (12)0.02553 (12)0.02505 (12)−0.00136 (6)0.00501 (8)−0.00143 (6)
N10.0248 (7)0.0320 (7)0.0307 (7)0.0018 (6)−0.0005 (6)−0.0007 (6)
N20.0294 (8)0.0338 (7)0.0259 (7)0.0060 (6)0.0018 (6)−0.0030 (6)
N30.0444 (11)0.0571 (11)0.0448 (10)−0.0097 (8)−0.0145 (8)−0.0019 (8)
N40.0296 (7)0.0384 (8)0.0265 (7)−0.0070 (6)0.0060 (6)0.0012 (6)
N50.0320 (8)0.0277 (7)0.0255 (7)0.0014 (6)0.0065 (6)0.0009 (6)
N60.0387 (9)0.0395 (9)0.0483 (9)−0.0061 (7)0.0193 (7)0.0040 (7)
N70.0202 (6)0.0268 (7)0.0266 (7)−0.0021 (5)0.0059 (5)−0.0020 (5)
N80.0218 (7)0.0269 (7)0.0256 (7)−0.0035 (5)0.0020 (5)0.0013 (5)
N90.0226 (6)0.0252 (6)0.0264 (7)−0.0006 (5)0.0073 (5)−0.0012 (5)
C10.0272 (8)0.0271 (8)0.0266 (8)−0.0026 (6)0.0048 (6)0.0027 (6)
C20.0236 (8)0.0274 (8)0.0260 (8)−0.0010 (6)0.0007 (6)0.0020 (6)
C30.0212 (8)0.0220 (7)0.0253 (8)0.0001 (6)0.0070 (6)−0.0044 (6)
C40.0239 (8)0.0256 (8)0.0285 (8)−0.0004 (6)0.0067 (6)0.0041 (6)
C50.0200 (8)0.0290 (8)0.0257 (8)0.0009 (6)0.0032 (6)−0.0003 (6)
C60.0257 (8)0.0340 (9)0.0230 (8)−0.0024 (7)0.0067 (6)−0.0029 (6)
C70.0239 (8)0.0317 (8)0.0257 (8)−0.0058 (6)0.0061 (6)−0.0069 (6)
C80.0203 (7)0.0219 (7)0.0279 (8)0.0014 (6)0.0079 (6)−0.0028 (6)
C90.0218 (7)0.0256 (8)0.0256 (8)0.0001 (6)0.0029 (6)0.0003 (6)
C100.0214 (8)0.0251 (8)0.0288 (8)−0.0010 (6)0.0032 (6)−0.0025 (6)

Geometric parameters (Å, °)

Zn1—N41.9486 (14)C1—H10.9300
Zn1—N11.9676 (14)C2—C31.405 (2)
Zn1—N72.0157 (13)C2—H20.9300
Zn1—N9i2.0439 (13)C3—C41.390 (2)
N1—N21.191 (2)C4—C51.381 (2)
N2—N31.149 (2)C4—H40.9300
N4—N51.203 (2)C5—H50.9300
N5—N61.152 (2)C6—C71.381 (2)
N7—C51.342 (2)C6—H60.9300
N7—C11.350 (2)C7—C81.396 (2)
N8—C31.381 (2)C7—H70.9300
N8—C81.383 (2)C8—C91.400 (2)
N8—H8N0.81 (2)C9—C101.372 (2)
N9—C61.343 (2)C9—H90.9300
N9—C101.345 (2)C10—H100.9300
C1—C21.370 (2)
N4—Zn1—N1122.54 (6)N8—C3—C4126.08 (15)
N4—Zn1—N7105.23 (6)N8—C3—C2116.56 (14)
N1—Zn1—N7106.66 (6)C4—C3—C2117.28 (14)
N4—Zn1—N9i110.15 (6)C5—C4—C3119.17 (15)
N1—Zn1—N9i106.28 (6)C5—C4—H4120.4
N7—Zn1—N9i104.59 (5)C3—C4—H4120.4
N2—N1—Zn1124.32 (12)N7—C5—C4123.57 (15)
N3—N2—N1178.26 (19)N7—C5—H5118.2
N5—N4—Zn1124.92 (12)C4—C5—H5118.2
N6—N5—N4175.50 (17)N9—C6—C7124.14 (15)
C5—N7—C1117.13 (13)N9—C6—H6117.9
C5—N7—Zn1123.60 (11)C7—C6—H6117.9
C1—N7—Zn1118.65 (10)C6—C7—C8118.68 (15)
C3—N8—C8130.87 (14)C6—C7—H7120.7
C3—N8—H8N113.9 (14)C8—C7—H7120.7
C8—N8—H8N115.0 (14)N8—C8—C7125.49 (14)
C6—N9—C10116.84 (14)N8—C8—C9117.32 (14)
C6—N9—Zn1ii121.35 (11)C7—C8—C9117.16 (14)
C10—N9—Zn1ii121.73 (11)C10—C9—C8120.02 (15)
N7—C1—C2123.00 (15)C10—C9—H9120.0
N7—C1—H1118.5C8—C9—H9120.0
C2—C1—H1118.5N9—C10—C9123.03 (14)
C1—C2—C3119.69 (15)N9—C10—H10118.5
C1—C2—H2120.2C9—C10—H10118.5
C3—C2—H2120.2
N4—Zn1—N1—N2−67.03 (16)C1—C2—C3—C43.1 (2)
N7—Zn1—N1—N2171.88 (14)N8—C3—C4—C5179.10 (15)
N9i—Zn1—N1—N260.70 (15)C2—C3—C4—C5−4.2 (2)
N1—Zn1—N4—N543.33 (17)C1—N7—C5—C41.7 (2)
N7—Zn1—N4—N5165.09 (14)Zn1—N7—C5—C4−169.13 (12)
N9i—Zn1—N4—N5−82.70 (15)C3—C4—C5—N71.9 (2)
N4—Zn1—N7—C5−149.52 (12)C10—N9—C6—C72.1 (2)
N1—Zn1—N7—C5−17.95 (14)Zn1ii—N9—C6—C7−174.54 (12)
N9i—Zn1—N7—C594.40 (13)N9—C6—C7—C81.1 (2)
N4—Zn1—N7—C139.83 (13)C3—N8—C8—C7−22.3 (3)
N1—Zn1—N7—C1171.39 (11)C3—N8—C8—C9159.76 (15)
N9i—Zn1—N7—C1−76.26 (12)C6—C7—C8—N8178.29 (15)
C5—N7—C1—C2−2.9 (2)C6—C7—C8—C9−3.8 (2)
Zn1—N7—C1—C2168.40 (13)N8—C8—C9—C10−178.40 (14)
N7—C1—C2—C30.5 (2)C7—C8—C9—C103.5 (2)
C8—N8—C3—C4−6.7 (3)C6—N9—C10—C9−2.4 (2)
C8—N8—C3—C2176.62 (15)Zn1ii—N9—C10—C9174.18 (12)
C1—C2—C3—N8−179.89 (14)C8—C9—C10—N9−0.4 (2)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N8—H8N···N3iii0.81 (2)2.14 (2)2.938 (2)172.7 (19)

Symmetry codes: (iii) x+3/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2257).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • LaDuca, R. L. (2009). Coord. Chem. Rev.253, 1759–1792.
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software, Bicester, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. & Zubieta, J. (1998). Inorg. Chem.37, 3411–3414.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography