PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o20.
Published online 2009 December 4. doi:  10.1107/S1600536809050909
PMCID: PMC2980245

6-(1-Methyl­ethyl)-12-phenyl-5,6,7,12-tetra­hydro­dibenz[c,f][1,5]aza­silocine

Abstract

The title compound, C23H25NSi, has an eight-membered silicon-containing heterocyclic ring with an intra­molecular N(...)Si close contact, the transannular distance of which is 2.6294 (18) Å. The resulting geometry about the Si atom is distorted trigonal-bypyramidal, with the N and H atoms occupying apical sites. The dihedral angle between the aromatic rings fused to the eight-membered ring is 63.27 (7)°.

Related literature

For highly coordinated organosilanes, see: Brellère et al. (1986 [triangle]); Carré et al. (1997 [triangle]); Paton et al. (1977 [triangle]); Woning & Verkade (1991 [triangle]); Yoshida et al. (2006 [triangle]). For a related structure, see: Saruhashi et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o20-scheme1.jpg

Experimental

Crystal data

  • C23H25NSi
  • M r = 343.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o20-efi1.jpg
  • a = 9.756 (7) Å
  • b = 10.269 (7) Å
  • c = 18.912 (12) Å
  • β = 92.745 (3)°
  • V = 1893 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 120 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.975, T max = 0.987
  • 11962 measured reflections
  • 3278 independent reflections
  • 2798 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.100
  • S = 1.08
  • 3278 reflections
  • 232 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: yadokari-XG (Wakita, 2005 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050909/is2498sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050909/is2498Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by the Global COE Program (Chemistry) and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. KG is grateful to Tokuyama Science Foundation for financial support. We also thank Tosoh Finechem Corporation for the generous gifts of alkyl­lithiums.

supplementary crystallographic information

Comment

Highly coordinated hydrosilanes have been of great interest for their unique structures and reactivities. It has been known that, in highly coordinated monohydrosilanes, the Si—H bond has high affinity for equatorial position (Brellère et al., 1986) and there are only a few examples with the Si—H bond at the apical position (Woning & Verkade, 1991). A dibenz[c,f][1,5]azasilocine framework has been utilized for the synthesis of various highly coordinated silicon compounds (Paton et al., 1977; Carré et al., 1997; Yoshida et al., 2006). Recently, we reported the synthesis and structural characterization of a pentacoordinated monohydrosilane bearing this molecular framework with the apical Si—H bond (Saruhashi et al., 2001). As a further investigation of this work, the crystal structure of the title new hydrosilane is reported.

The title compound was synthesized by the reaction of N,N-bis(2-bromobenzyl)isopropylamine (Carré et al., 1997) with n-butyllithium followed by treatment with phenylsilane. The molecular structure of the title compound is shown in Fig. 1. It was found that the geometry around the silicon atom is that of a distorted trigonal bypyramid with the sum of the equatorial C—Si—C bond angles of 346.3°. The SiH hydrogen atom occupies the apical site in spite of its lower apicophilicity than that of a phenyl group, which is similar to the related N-butyl compound we previously reported (Saruhashi et al., 2001). The Si···N transannular distance is 2.6294 (18) Å, which is slightly longer than that of the N-butyl derivative [2.516 (2) Å] probably because of the steric repulsion between the isopropyl group and the phenyl ring.

Experimental

A solution of n-butyllithium in hexane (1.6 M; 4.2 ml, 6.7 mmol) was added dropwise to a solution of N,N-bis(2-bromobenzyl)isopropylamine (1.25 g, 3.16 mmol) in ether (3 ml) at 233 K. The solution was stirred at the same temperature for 30 min and then allowed to warm to room temperature. After stirring for additional 2 h, the solution was cooled to 233 K, and a solution of phenylsilane (345 mg, 3.19 mmol) in ether (2 ml) was added dropwise. The mixture was allowed to warm to room temperature, and stirred overnight. After addition of water, the mixture was extracted with ether, and the organic layer was dried over anhydrous magnesium sulfate. After filtration and removal of the solvent, the residue was purified by gel permeation liquid chromatography (eluting with chloroform) and then recrystallization from hexane to give the title compound (101 mg, 0.295 mmol, 9.3%) as colorless crystals. Physical data: m.p. 354.1–355.8 K (decomposition); 1NMR (400 MHz, CDCl3, 300 K): δ 0.76 (br, 6H), 2.53 (br, 1H), 3.78 (s, 4H), 5.53 (brs, 1H), 7.12–7.32 (m, 9H), 7.51 (br, 2H), 7.72 (br, 2H). Anal. Calcd for C23H25NSi: C 80.41, H 7.34, N 4.08%. Found: C 80.19, H 7.48, N, 3.94%.

Refinement

The H atom of the SiH group was found in a difference Fourier map and refined isotropically, while the C-bound H atoms were treated as riding, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The methyl groups were allowed to rotate freely about the C-C bond.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
Fig. 2.
Packing diagram.

Crystal data

C23H25NSiZ = 4
Mr = 343.53F(000) = 736
Monoclinic, P21/cDx = 1.206 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 9.756 (7) Åθ = 3.0–25.0°
b = 10.269 (7) ŵ = 0.13 mm1
c = 18.912 (12) ÅT = 120 K
β = 92.745 (3)°Block, colourless
V = 1893 (2) Å30.20 × 0.20 × 0.10 mm

Data collection

Rigaku Mercury CCD diffractometer3278 independent reflections
Radiation source: fine-focus sealed tube2798 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (REQAB; Jacobson, 1998)h = −11→11
Tmin = 0.975, Tmax = 0.987k = −12→9
11962 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0402P)2 + 1.0221P] where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si10.10808 (5)0.12541 (5)0.18691 (3)0.02030 (15)
H10.0293 (18)0.0512 (18)0.2351 (9)0.023 (5)*
C10.14424 (17)−0.00037 (17)0.11833 (9)0.0204 (4)
C20.17207 (17)0.03310 (17)0.04842 (9)0.0210 (4)
C30.19436 (18)−0.06347 (19)−0.00083 (10)0.0260 (4)
H20.2108−0.0400−0.04830.031*
C40.19306 (18)−0.19363 (19)0.01801 (11)0.0286 (4)
H30.2105−0.2589−0.01600.034*
C50.16617 (19)−0.22838 (18)0.08669 (11)0.0297 (5)
H40.1659−0.31750.10010.036*
C60.13964 (18)−0.13231 (17)0.13580 (10)0.0239 (4)
H50.1179−0.15690.18240.029*
C7−0.01585 (18)0.25743 (17)0.15815 (9)0.0213 (4)
C80.02098 (18)0.36529 (17)0.11797 (9)0.0216 (4)
C9−0.07488 (19)0.46221 (18)0.10020 (10)0.0263 (4)
H6−0.04880.53450.07250.032*
C10−0.20760 (19)0.4539 (2)0.12252 (10)0.0305 (5)
H7−0.27160.52130.11130.037*
C11−0.24688 (19)0.3469 (2)0.16127 (10)0.0311 (5)
H8−0.33850.33980.17580.037*
C12−0.15189 (18)0.25012 (19)0.17883 (9)0.0256 (4)
H9−0.17970.17710.20550.031*
C130.17620 (17)0.17561 (17)0.02855 (9)0.0223 (4)
H100.23340.1872−0.01280.027*
H110.08230.20620.01530.027*
C140.16617 (18)0.37943 (17)0.09530 (10)0.0230 (4)
H120.16550.42570.04940.028*
H130.21920.43270.13060.028*
N10.23330 (14)0.25313 (14)0.08823 (7)0.0196 (3)
C150.38542 (17)0.26790 (18)0.08917 (10)0.0231 (4)
H140.41500.30250.13690.028*
C160.45915 (18)0.13896 (18)0.08041 (10)0.0267 (4)
H150.42290.07450.11280.040*
H160.55760.15080.09120.040*
H170.44450.10840.03150.040*
C170.4350 (2)0.3648 (2)0.03466 (11)0.0331 (5)
H180.40600.3354−0.01300.050*
H190.53530.37050.03870.050*
H200.39540.45070.04340.050*
C180.25657 (18)0.18885 (17)0.24348 (9)0.0210 (4)
C190.37831 (18)0.11897 (18)0.25521 (9)0.0253 (4)
H210.38800.03670.23300.030*
C200.48570 (19)0.1670 (2)0.29869 (10)0.0317 (5)
H220.56780.11780.30560.038*
C210.4733 (2)0.2858 (2)0.33186 (11)0.0361 (5)
H230.54660.31860.36160.043*
C220.3540 (2)0.3568 (2)0.32163 (11)0.0356 (5)
H240.34480.43860.34440.043*
C230.24691 (19)0.30841 (19)0.27785 (10)0.0281 (4)
H250.16520.35810.27120.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0192 (3)0.0210 (3)0.0206 (3)−0.0018 (2)−0.00047 (19)−0.0006 (2)
C10.0149 (8)0.0215 (9)0.0243 (10)−0.0014 (7)−0.0028 (7)−0.0001 (8)
C20.0130 (8)0.0251 (10)0.0246 (10)−0.0005 (7)−0.0015 (7)−0.0029 (8)
C30.0195 (9)0.0328 (11)0.0256 (10)−0.0031 (8)−0.0001 (7)−0.0060 (8)
C40.0201 (9)0.0293 (10)0.0361 (12)−0.0003 (8)−0.0025 (8)−0.0141 (9)
C50.0238 (10)0.0184 (9)0.0460 (13)−0.0011 (8)−0.0079 (9)−0.0037 (9)
C60.0212 (9)0.0233 (10)0.0268 (10)−0.0031 (7)−0.0044 (7)0.0023 (8)
C70.0201 (9)0.0248 (9)0.0189 (9)−0.0010 (7)−0.0019 (7)−0.0079 (8)
C80.0215 (9)0.0220 (9)0.0207 (9)0.0015 (7)−0.0046 (7)−0.0063 (8)
C90.0290 (10)0.0235 (10)0.0256 (10)0.0036 (8)−0.0055 (8)−0.0070 (8)
C100.0255 (10)0.0353 (11)0.0297 (11)0.0100 (9)−0.0081 (8)−0.0127 (9)
C110.0179 (9)0.0450 (12)0.0300 (11)0.0035 (9)−0.0020 (8)−0.0149 (10)
C120.0238 (10)0.0327 (11)0.0203 (10)−0.0022 (8)0.0007 (7)−0.0094 (8)
C130.0188 (9)0.0274 (10)0.0206 (10)−0.0002 (7)0.0007 (7)0.0020 (8)
C140.0234 (9)0.0183 (9)0.0272 (10)−0.0002 (7)−0.0011 (7)0.0025 (8)
N10.0165 (7)0.0190 (8)0.0232 (8)−0.0006 (6)−0.0006 (6)0.0012 (6)
C150.0162 (9)0.0270 (10)0.0261 (10)−0.0027 (7)−0.0007 (7)0.0053 (8)
C160.0172 (9)0.0296 (10)0.0334 (11)0.0003 (8)0.0029 (8)0.0043 (9)
C170.0226 (10)0.0357 (11)0.0410 (12)−0.0047 (9)0.0020 (8)0.0129 (10)
C180.0220 (9)0.0243 (9)0.0168 (9)−0.0031 (7)0.0018 (7)0.0027 (8)
C190.0262 (10)0.0259 (10)0.0238 (10)−0.0007 (8)0.0015 (8)0.0040 (8)
C200.0211 (10)0.0394 (12)0.0341 (12)−0.0002 (8)−0.0043 (8)0.0106 (10)
C210.0276 (11)0.0470 (13)0.0328 (12)−0.0103 (10)−0.0081 (9)0.0000 (10)
C220.0334 (11)0.0378 (12)0.0352 (12)−0.0057 (9)−0.0035 (9)−0.0114 (10)
C230.0233 (10)0.0324 (11)0.0285 (11)0.0012 (8)−0.0007 (8)−0.0047 (9)

Geometric parameters (Å, °)

Si1—C11.876 (2)C13—H100.9900
Si1—C181.876 (2)C13—H110.9900
Si1—C71.880 (2)C14—N11.462 (2)
Si1—H11.438 (18)C14—H120.9900
C1—C61.396 (3)C14—H130.9900
C1—C21.405 (3)N1—C151.491 (2)
C2—C31.385 (3)C15—C161.520 (3)
C2—C131.512 (3)C15—C171.528 (3)
C3—C41.384 (3)C15—H141.0000
C3—H20.9500C16—H150.9800
C4—C51.384 (3)C16—H160.9800
C4—H30.9500C16—H170.9800
C5—C61.388 (3)C17—H180.9800
C5—H40.9500C17—H190.9800
C6—H50.9500C17—H200.9800
C7—C81.400 (3)C18—C231.394 (3)
C7—C121.403 (3)C18—C191.396 (3)
C8—C91.396 (3)C19—C201.391 (3)
C8—C141.506 (3)C19—H210.9500
C9—C101.384 (3)C20—C211.380 (3)
C9—H60.9500C20—H220.9500
C10—C111.385 (3)C21—C221.380 (3)
C10—H70.9500C21—H230.9500
C11—C121.388 (3)C22—C231.393 (3)
C11—H80.9500C22—H240.9500
C12—H90.9500C23—H250.9500
C13—N11.469 (2)
Si1···N12.6294 (18)
C1—Si1—C18117.89 (8)C2—C13—H11109.6
C1—Si1—C7115.86 (8)H10—C13—H11108.1
C18—Si1—C7112.52 (9)N1—C14—C8111.83 (14)
C1—Si1—N175.14 (8)N1—C14—H12109.2
C18—Si1—N181.91 (8)C8—C14—H12109.2
C7—Si1—N175.47 (8)N1—C14—H13109.2
C1—Si1—H1101.4 (7)C8—C14—H13109.2
C18—Si1—H1104.2 (7)H12—C14—H13107.9
C7—Si1—H1102.1 (7)C14—N1—C13113.33 (14)
N1—Si1—H1173.9 (7)C14—N1—C15111.02 (14)
C6—C1—C2118.03 (16)C13—N1—C15113.88 (14)
C6—C1—Si1119.71 (14)C14—N1—Si198.76 (11)
C2—C1—Si1122.24 (14)C13—N1—Si195.92 (11)
C3—C2—C1120.09 (17)C15—N1—Si1122.57 (10)
C3—C2—C13121.27 (17)N1—C15—C16112.71 (15)
C1—C2—C13118.63 (15)N1—C15—C17113.89 (14)
C4—C3—C2120.99 (18)C16—C15—C17109.11 (16)
C4—C3—H2119.5N1—C15—H14106.9
C2—C3—H2119.5C16—C15—H14106.9
C3—C4—C5119.69 (18)C17—C15—H14106.9
C3—C4—H3120.2C15—C16—H15109.5
C5—C4—H3120.2C15—C16—H16109.5
C4—C5—C6119.64 (18)H15—C16—H16109.5
C4—C5—H4120.2C15—C16—H17109.5
C6—C5—H4120.2H15—C16—H17109.5
C5—C6—C1121.51 (18)H16—C16—H17109.5
C5—C6—H5119.2C15—C17—H18109.5
C1—C6—H5119.2C15—C17—H19109.5
C8—C7—C12117.67 (17)H18—C17—H19109.5
C8—C7—Si1123.33 (14)C15—C17—H20109.5
C12—C7—Si1118.98 (14)H18—C17—H20109.5
C9—C8—C7120.56 (17)H19—C17—H20109.5
C9—C8—C14119.41 (17)C23—C18—C19117.03 (16)
C7—C8—C14120.01 (15)C23—C18—Si1120.26 (14)
C10—C9—C8120.55 (19)C19—C18—Si1122.68 (14)
C10—C9—H6119.7C20—C19—C18121.52 (18)
C8—C9—H6119.7C20—C19—H21119.2
C9—C10—C11119.83 (18)C18—C19—H21119.2
C9—C10—H7120.1C21—C20—C19120.14 (18)
C11—C10—H7120.1C21—C20—H22119.9
C10—C11—C12119.74 (18)C19—C20—H22119.9
C10—C11—H8120.1C22—C21—C20119.69 (18)
C12—C11—H8120.1C22—C21—H23120.2
C11—C12—C7121.62 (19)C20—C21—H23120.2
C11—C12—H9119.2C21—C22—C23119.9 (2)
C7—C12—H9119.2C21—C22—H24120.1
N1—C13—C2110.32 (14)C23—C22—H24120.1
N1—C13—H10109.6C22—C23—C18121.72 (18)
C2—C13—H10109.6C22—C23—H25119.1
N1—C13—H11109.6C18—C23—H25119.1
C18—Si1—C1—C690.22 (15)C7—C8—C14—N127.9 (2)
C7—Si1—C1—C6−132.20 (14)C8—C14—N1—C1368.82 (19)
N1—Si1—C1—C6162.45 (15)C8—C14—N1—C15−161.54 (14)
C18—Si1—C1—C2−91.80 (15)C8—C14—N1—Si1−31.55 (15)
C7—Si1—C1—C245.78 (17)C2—C13—N1—C14−142.27 (15)
N1—Si1—C1—C2−19.57 (13)C2—C13—N1—C1589.55 (17)
C6—C1—C2—C3−0.2 (2)C2—C13—N1—Si1−40.07 (14)
Si1—C1—C2—C3−178.19 (13)C1—Si1—N1—C14148.32 (11)
C6—C1—C2—C13179.50 (15)C18—Si1—N1—C14−89.90 (12)
Si1—C1—C2—C131.5 (2)C7—Si1—N1—C1425.98 (11)
C1—C2—C3—C4−1.6 (3)C1—Si1—N1—C1333.57 (10)
C13—C2—C3—C4178.74 (16)C18—Si1—N1—C13155.34 (11)
C2—C3—C4—C51.4 (3)C7—Si1—N1—C13−88.77 (11)
C3—C4—C5—C60.5 (3)C1—Si1—N1—C15−89.73 (13)
C4—C5—C6—C1−2.4 (3)C18—Si1—N1—C1532.04 (13)
C2—C1—C6—C52.2 (3)C7—Si1—N1—C15147.92 (14)
Si1—C1—C6—C5−179.79 (13)C14—N1—C15—C16−178.81 (15)
C1—Si1—C7—C8−79.90 (16)C13—N1—C15—C16−49.5 (2)
C18—Si1—C7—C859.91 (17)Si1—N1—C15—C1665.15 (18)
N1—Si1—C7—C8−14.73 (13)C14—N1—C15—C17−53.8 (2)
C1—Si1—C7—C12101.44 (15)C13—N1—C15—C1775.5 (2)
C18—Si1—C7—C12−118.76 (14)Si1—N1—C15—C17−169.85 (12)
N1—Si1—C7—C12166.60 (15)C1—Si1—C18—C23158.83 (14)
C12—C7—C8—C90.7 (2)C7—Si1—C18—C2319.91 (17)
Si1—C7—C8—C9−177.93 (13)N1—Si1—C18—C2390.44 (15)
C12—C7—C8—C14178.98 (16)C1—Si1—C18—C19−23.30 (18)
Si1—C7—C8—C140.3 (2)C7—Si1—C18—C19−162.22 (14)
C7—C8—C9—C100.6 (3)N1—Si1—C18—C19−91.69 (15)
C14—C8—C9—C10−177.69 (17)C23—C18—C19—C20−0.6 (3)
C8—C9—C10—C11−1.7 (3)Si1—C18—C19—C20−178.53 (14)
C9—C10—C11—C121.4 (3)C18—C19—C20—C210.4 (3)
C10—C11—C12—C7−0.1 (3)C19—C20—C21—C22−0.1 (3)
C8—C7—C12—C11−1.0 (3)C20—C21—C22—C23−0.1 (3)
Si1—C7—C12—C11177.76 (14)C21—C22—C23—C180.0 (3)
C3—C2—C13—N1−145.26 (16)C19—C18—C23—C220.4 (3)
C1—C2—C13—N135.1 (2)Si1—C18—C23—C22178.38 (15)
C9—C8—C14—N1−153.86 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2498).

References

  • Brellère, C., Carré, F., Corriu, R. J. P., Poirier, M. & Royo, G. (1986). Organometallics, 5, 388–390.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Carré, F. H., Corriu, R. J. P., Lanneau, G. F., Merle, P., Soulairol, F. & Yao, J. (1997). Organometallics, 16, 3878–3888.
  • Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Paton, W. F., Corey, E. R., Corey, J. Y. & Glick, M. D. (1977). Acta Cryst. B33, 3322–3325.
  • Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Saruhashi, K., Goto, K. & Kawashima, T. (2001). Chem. Heterocycl. Compd, 37, 1394–1395.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wakita, K. (2005). yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari/index.html.
  • Woning, J. & Verkade, J. G. (1991). Organometallics, 10, 2259–2266.
  • Yoshida, A., Goto, K. & Kawashima, T. (2006). Bull. Chem. Soc. Jpn, 79, 793–795.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography