PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o246.
Published online 2009 December 24. doi:  10.1107/S1600536809054889
PMCID: PMC2980241

2-Meth­oxy-3-[(3,4,5-trimethoxy­anilino)methyl­idene]-3,4-dihydro-2H-1-benzopyran-4-one

Abstract

The title mol­ecule, C20H21NO6, adopts a keto–amine tautomeric form. An intra­molecular N—H(...)O hydrogen bond, classified as a resonanse-assisted hydrogen bond, influences the mol­ecular conformation; the two benzene rings form a dihedral angle of 24.6 (1)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link mol­ecules into chains propagating along [001].

Related literature

For the biological propertries of similar structures, see: Khan et al. (2009 [triangle]). For related structures, see: Gilli et al. (1994 [triangle]); Bertolasi et al. (1998 [triangle]); Małecka & Budzisz (2006 [triangle]); Małecka (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o246-scheme1.jpg

Experimental

Crystal data

  • C20H21NO6
  • M r = 371.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o246-efi1.jpg
  • a = 11.6145 (6) Å
  • b = 20.8689 (9) Å
  • c = 7.3728 (5) Å
  • β = 94.533 (5)°
  • V = 1781.44 (17) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.86 mm−1
  • T = 100 K
  • 0.2 × 0.05 × 0.03 mm

Data collection

  • Oxford Diffraction Gemini E Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.844, T max = 1.000
  • 7511 measured reflections
  • 2862 independent reflections
  • 2344 reflections with I > 2σ(I)
  • R int = 0.024
  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.101
  • S = 1.05
  • 2862 reflections
  • 248 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054889/cv2678sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054889/cv2678Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the University of Łódź and the Medical University of Łódź (grant No. 505/710 to MM and No. 502–13-701 to MC) is gratefully acknowledged. The authors thank Dr Oliver Presly from Oxford Diffraction for collecting the data.

supplementary crystallographic information

Comment

The present paper is a continuation of X-ray studies of a group of chromone derivatives (Małecka & Budzisz, 2006, Małecka, 2007). Due to their biological activity (Khan et al., 2009) and the presence of intramolecular N—H···O hydrogen bond which could be classified as resonanse assisted hydrogen bond (RAHB) (Gilli et al., 1994).

The more detailed insight into the molecular structure of the title compound shows that N—H···O hydrogen bond (Table 1) may be classified as resonance assisted hydrogen bond (RAHB). Such interactions RAHB have been investigated for homonuclear O—H···O interactions and for heteronuclear N—H···O RAHBs (Bertolasi et al., 1998).

Considering O4═C4—C3═C31—N1—H1 fragment it is not observed the equalization of C4—C3 and C3═C31 in comparison to previuos examined structures However, it was found the elongation and shortening of C4═O4 and C3—N1 bonds, respectively. The π- electron delocalization effect is not so evident as in earlier investigated structures. It is associated with lack of the planarity and non-aromatic character of main part of molecule.

The packing of the molecules in the crystal lattice is stabilized via C—H···O hydrogen bonds (Table 1). Atom C14 is involved in a weak C—H···O intermolecular interaction with atom O4 related by symmetry x, 1/2 - y, -1/2 + z what results in forming chains C(11) along c axis.

The six-memebered pyrone ring adopts HC conformation, what confirm the Cremer & Pople parameters QT= 0.396 (1) Å, [var phi]2= 62.3 (2)°, θ2= 39.8 (3)°.

Bonds distances and angles are in a good agreement with expected values.

Experimental

4-Oxo-4H-1-benzopyran-3-carboxaldehyde (0.348 g, 0.002 mol) was dissolved in hot toluene (20 ml) together with a small amount of p-toluenesulphonic acid as a catalyst. Resulting solution was kept under reflux while the solution of 3,4,5-trimethoxyaniline (0.366 g, 0.002 mol) in toluene (20 ml) was slowly added. When the addition was finished, the solution was kept under reflux for following 3 h. Then it was left in room temperature for 24 h. Approximately half of the solvent was removed under reduced pressure and resulting solution was left in the refrigerator for 48 h. Obtained precipitate was filtered off, added to 30 ml of methanol and refluxed for 30 minutes. The hot solution was filtered off to remove insolubilities. Then it was left in room temperature for 2 h. Approximately half of the solvent was removed under reduced pressure. Next the solution was left in the refrigerator for 4 days. Resulting precipitate was filtered off, washed with small amount of methanol and diethyl ether and dried under reduced pressure.

Refinement

All H-atoms were positioned geometrically and refined with a riding model; for methyl H atoms Uiso were constrained to be 1.5 times Ueq of the carrier atom and C—H=0.98 Å; for others H atoms Uiso were constrained to be 1.2 times Ueq of the carrier atom and C—H=0.95 Å, 0.88 Å, for aromatic, amine groups, respectively. The incomplete data sets was collected due to poor quality, weakly diffracted crystal.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The N1—H1···O4 hydrogen bond classified as resonance assisted hydrogen bond (RAHB) ...

Crystal data

C20H21NO6F(000) = 784
Mr = 371.38Dx = 1.385 Mg m3
Monoclinic, P21/cMelting point: 408.2 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 11.6145 (6) ÅCell parameters from 4015 reflections
b = 20.8689 (9) Åθ = 3.8–62.6°
c = 7.3728 (5) ŵ = 0.86 mm1
β = 94.533 (5)°T = 100 K
V = 1781.44 (17) Å3Needle, light yellow
Z = 40.2 × 0.05 × 0.03 mm

Data collection

Oxford Diffraction Gemini E Ultra diffractometer2862 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
graphiteRint = 0.024
ω scansθmax = 62.7°, θmin = 3.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −13→12
Tmin = 0.844, Tmax = 1.000k = −23→24
7511 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0639P)2 + 0.2369P] where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.23908 (9)0.33541 (5)0.31295 (15)0.0255 (3)
O40.95775 (10)0.38347 (5)0.58323 (17)0.0289 (3)
O21.09596 (10)0.35060 (5)0.07967 (15)0.0260 (3)
O50.47817 (9)0.21086 (5)0.59973 (16)0.0249 (3)
O60.53215 (9)0.08807 (5)0.56606 (15)0.0238 (3)
O70.74024 (10)0.05173 (5)0.46838 (16)0.0244 (3)
C21.12917 (14)0.31326 (8)0.2334 (2)0.0235 (4)
H21.13680.26760.19520.028*
C31.03717 (14)0.31789 (7)0.3633 (2)0.0210 (3)
C41.03657 (14)0.37260 (8)0.4811 (2)0.0222 (4)
C51.14364 (15)0.47322 (8)0.5741 (2)0.0275 (4)
H51.07850.48730.63350.033*
C61.24169 (16)0.51097 (8)0.5790 (2)0.0310 (4)
H61.24450.55070.64210.037*
C71.33615 (15)0.49006 (8)0.4906 (2)0.0316 (4)
H71.40310.51630.49240.038*
C81.33492 (15)0.43197 (8)0.3999 (2)0.0285 (4)
H81.40030.41810.34070.034*
C91.13951 (14)0.41457 (8)0.4826 (2)0.0226 (4)
C101.23612 (14)0.39430 (8)0.3972 (2)0.0239 (4)
C310.95368 (14)0.27129 (7)0.3632 (2)0.0205 (3)
H310.96310.23390.29220.025*
N10.86037 (11)0.27528 (6)0.45664 (18)0.0204 (3)
H10.84880.31210.51030.025*
C330.77785 (14)0.22652 (7)0.4788 (2)0.0189 (3)
C340.66962 (14)0.24532 (7)0.5266 (2)0.0201 (3)
H340.65210.28940.54040.024*
C350.58738 (13)0.19877 (7)0.5540 (2)0.0197 (3)
C360.61350 (14)0.13378 (7)0.5328 (2)0.0209 (3)
C370.72250 (14)0.11622 (7)0.4839 (2)0.0202 (3)
C380.80637 (14)0.16237 (7)0.4574 (2)0.0198 (3)
H380.88100.15030.42570.024*
C120.44405 (15)0.27643 (8)0.6067 (2)0.0270 (4)
H12A0.49560.29920.69640.041*
H12B0.36450.27910.64170.041*
H12C0.44860.29600.48670.041*
C130.46540 (14)0.06810 (8)0.4033 (2)0.0268 (4)
H13A0.42610.10530.34580.040*
H13B0.40790.03640.43430.040*
H13C0.51670.04900.31880.040*
C140.85363 (14)0.03145 (8)0.4304 (2)0.0270 (4)
H14A0.87190.04850.31220.040*
H14B0.8565−0.01550.42750.040*
H14C0.91010.04740.52550.040*
C111.18116 (17)0.35023 (9)−0.0509 (2)0.0344 (4)
H11A1.24850.3752−0.00390.052*
H11B1.14840.3693−0.16510.052*
H11C1.20470.3060−0.07310.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0172 (6)0.0308 (6)0.0284 (6)−0.0008 (5)0.0019 (5)−0.0014 (5)
O40.0269 (7)0.0251 (6)0.0361 (7)−0.0055 (5)0.0123 (6)−0.0058 (5)
O20.0259 (6)0.0284 (6)0.0240 (6)−0.0016 (5)0.0044 (5)0.0024 (5)
O50.0189 (6)0.0225 (6)0.0343 (7)0.0013 (4)0.0078 (5)−0.0024 (5)
O60.0221 (6)0.0213 (6)0.0285 (6)−0.0054 (4)0.0056 (5)0.0009 (5)
O70.0229 (6)0.0163 (5)0.0349 (7)0.0006 (4)0.0080 (5)0.0002 (5)
C20.0197 (8)0.0256 (8)0.0253 (9)−0.0017 (6)0.0021 (7)0.0022 (7)
C30.0188 (8)0.0237 (8)0.0204 (8)−0.0001 (6)0.0013 (6)0.0012 (6)
C40.0198 (8)0.0234 (8)0.0234 (8)−0.0014 (6)0.0028 (7)0.0037 (7)
C50.0277 (10)0.0290 (9)0.0260 (9)−0.0047 (7)0.0037 (7)0.0025 (7)
C60.0344 (10)0.0290 (9)0.0288 (9)−0.0099 (7)−0.0031 (8)0.0020 (7)
C70.0222 (9)0.0375 (10)0.0343 (10)−0.0095 (7)−0.0037 (8)0.0096 (8)
C80.0179 (9)0.0379 (10)0.0294 (9)−0.0026 (7)0.0003 (7)0.0062 (8)
C90.0214 (9)0.0266 (8)0.0196 (8)−0.0038 (6)0.0003 (6)0.0032 (6)
C100.0215 (9)0.0286 (8)0.0210 (8)−0.0010 (7)−0.0016 (7)0.0059 (7)
C310.0209 (8)0.0227 (8)0.0178 (7)−0.0009 (6)0.0004 (6)0.0004 (6)
N10.0188 (7)0.0194 (6)0.0233 (7)−0.0031 (5)0.0023 (6)−0.0007 (5)
C330.0189 (8)0.0215 (8)0.0162 (7)−0.0031 (6)0.0001 (6)0.0009 (6)
C340.0212 (9)0.0187 (7)0.0204 (8)−0.0008 (6)0.0009 (6)−0.0008 (6)
C350.0174 (8)0.0228 (8)0.0189 (8)0.0012 (6)0.0024 (6)−0.0007 (6)
C360.0199 (8)0.0218 (8)0.0209 (8)−0.0033 (6)0.0025 (6)0.0014 (6)
C370.0223 (8)0.0186 (7)0.0198 (8)0.0005 (6)0.0025 (6)−0.0001 (6)
C380.0172 (8)0.0223 (8)0.0201 (8)0.0004 (6)0.0033 (6)0.0008 (6)
C120.0229 (9)0.0250 (8)0.0333 (9)0.0057 (7)0.0036 (7)−0.0035 (7)
C130.0213 (9)0.0224 (8)0.0365 (10)−0.0035 (6)0.0009 (7)0.0008 (7)
C140.0238 (9)0.0216 (8)0.0364 (10)0.0042 (6)0.0085 (8)0.0000 (7)
C110.0363 (11)0.0399 (10)0.0284 (9)−0.0068 (8)0.0118 (8)−0.0006 (8)

Geometric parameters (Å, °)

O1—C101.379 (2)C9—C101.395 (2)
O1—C21.438 (2)C31—N11.332 (2)
O4—C41.251 (2)C31—H310.9500
O2—C21.4042 (19)N1—C331.416 (2)
O2—C111.434 (2)N1—H10.8800
O5—C351.3614 (19)C33—C341.389 (2)
O5—C121.4267 (19)C33—C381.391 (2)
O6—C361.3781 (19)C34—C351.388 (2)
O6—C131.438 (2)C34—H340.9500
O7—C371.3677 (18)C35—C361.401 (2)
O7—C141.4318 (19)C36—C371.393 (2)
C2—C31.493 (2)C37—C381.394 (2)
C2—H21.0000C38—H380.9500
C3—C311.373 (2)C12—H12A0.9800
C3—C41.435 (2)C12—H12B0.9800
C4—C91.481 (2)C12—H12C0.9800
C5—C61.383 (2)C13—H13A0.9800
C5—C91.397 (2)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C6—C71.390 (3)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C7—C81.384 (3)C14—H14C0.9800
C7—H70.9500C11—H11A0.9800
C8—C101.390 (2)C11—H11B0.9800
C8—H80.9500C11—H11C0.9800
C10—O1—C2114.66 (12)C34—C33—N1117.44 (13)
C2—O2—C11112.27 (13)C38—C33—N1120.61 (14)
C35—O5—C12116.97 (12)C35—C34—C33119.10 (14)
C36—O6—C13112.60 (12)C35—C34—H34120.4
C37—O7—C14117.01 (12)C33—C34—H34120.4
O2—C2—O1109.21 (12)O5—C35—C34124.86 (14)
O2—C2—C3108.48 (13)O5—C35—C36114.91 (13)
O1—C2—C3112.02 (13)C34—C35—C36120.23 (15)
O2—C2—H2109.0O6—C36—C37120.92 (14)
O1—C2—H2109.0O6—C36—C35119.52 (14)
C3—C2—H2109.0C37—C36—C35119.53 (14)
C31—C3—C4121.76 (15)O7—C37—C36115.26 (14)
C31—C3—C2119.67 (14)O7—C37—C38123.80 (14)
C4—C3—C2118.53 (14)C36—C37—C38120.93 (14)
O4—C4—C3123.18 (14)C33—C38—C37118.27 (15)
O4—C4—C9121.12 (15)C33—C38—H38120.9
C3—C4—C9115.62 (14)C37—C38—H38120.9
C6—C5—C9120.58 (17)O5—C12—H12A109.5
C6—C5—H5119.7O5—C12—H12B109.5
C9—C5—H5119.7H12A—C12—H12B109.5
C5—C6—C7119.20 (17)O5—C12—H12C109.5
C5—C6—H6120.4H12A—C12—H12C109.5
C7—C6—H6120.4H12B—C12—H12C109.5
C8—C7—C6121.54 (16)O6—C13—H13A109.5
C8—C7—H7119.2O6—C13—H13B109.5
C6—C7—H7119.2H13A—C13—H13B109.5
C7—C8—C10118.64 (16)O6—C13—H13C109.5
C7—C8—H8120.7H13A—C13—H13C109.5
C10—C8—H8120.7H13B—C13—H13C109.5
C10—C9—C5119.05 (15)O7—C14—H14A109.5
C10—C9—C4119.66 (15)O7—C14—H14B109.5
C5—C9—C4121.24 (15)H14A—C14—H14B109.5
O1—C10—C8117.42 (15)O7—C14—H14C109.5
O1—C10—C9121.56 (14)H14A—C14—H14C109.5
C8—C10—C9120.98 (16)H14B—C14—H14C109.5
N1—C31—C3123.98 (15)O2—C11—H11A109.5
N1—C31—H31118.0O2—C11—H11B109.5
C3—C31—H31118.0H11A—C11—H11B109.5
C31—N1—C33126.91 (13)O2—C11—H11C109.5
C31—N1—H1116.5H11A—C11—H11C109.5
C33—N1—H1116.5H11B—C11—H11C109.5
C34—C33—C38121.93 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O40.882.002.661 (2)131
C14—H14A···O4i0.982.483.414 (2)160

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2678).

References

  • Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1998). Acta Cryst. B54, 50–65.
  • Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc.116, 909–915.
  • Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem.17, 2983–2988. [PubMed]
  • Małecka, M. (2007). J. Mol. Struct.831, 135–143.
  • Małecka, M. & Budzisz, E. (2006). Acta Cryst. E62, o5058–o5060.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography