PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o103.
Published online 2009 December 12. doi:  10.1107/S1600536809052490
PMCID: PMC2980239

1α,6β,7β,14β,15β-Penta­hydr­oxy-7α,20-ep­oxy-ent-kaur-16-ene

Abstract

The title compound, enmenol, C20H30O6, a natural ent-kaurane diterpenoid, comprises five fused rings, four of which are six-membered. Cyclo­hexane ring A adopts a chair conformation, rings B and C adopt boat conformations, while ring D has an envelope conformation, and two intramolecular O—H(...)O interactions occur. In the crystal, inter­molecular O—H(...)O hydrogen bonds generate a two dimensional network.

Related literature

For the genus Isodon and diterpenoids from this genus see: Sun et al. (2001 [triangle]); Mori et al. (1970 [triangle]); Wang et al. (1995 [triangle]); Yan et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o103-scheme1.jpg

Experimental

Crystal data

  • C20H30O6
  • M r = 366.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o103-efi1.jpg
  • a = 8.0007 (3) Å
  • b = 10.7161 (6) Å
  • c = 20.7759 (9) Å
  • V = 1781.25 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 93 K
  • 0.43 × 0.37 × 0.23 mm

Data collection

  • Rigaku AFC10 Saturn724+ diffractometer
  • 14459 measured reflections
  • 2336 independent reflections
  • 2263 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.071
  • S = 1.01
  • 2336 reflections
  • 249 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052490/zs2022sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052490/zs2022Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Henan Province Science and Technology Foundation of China (No. 611042600)

supplementary crystallographic information

Comment

The title compound, 1α,6β,7β,14β,15β-pentahydroxy-7α,20- epoxy-ent-kaur-16-ene, C20H30O6 (I) (enmenol) is a natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon japonica var glaucocalyx (Maxim.) Hara. The leaves of this plant have been used for the treatment of colds, throat swelling and pain, tonsillitis, gastritis, hepatitis, mastitis and cancer. The title compound has also been isolated from Isodon trichocarpus (Mori et al., 1970) and Isodon macrocabyx (Wang et al.,1995), and its structure was postulated from spectroscopic methods (Mori et al., 1970; Wang et al., 1995). The X-ray crystallographic analysis of (I) confirms this proposed molecular structure (Fig. 1). In the structure there is a trans junction between ring A (C1—C10) and ring B (C5—C10). Cis junctions are present between ring B and ring C (C8/C9/C11—C14) and ring C and ring D (C8/C13—C16). Ring A adopts a chair conformation with an average torsion angle of 51.8 (2)°. Rings B and C adopt a boat conformation because of the formation of the oxygen bridge between C7 and C20. Ring D shows an envelope conformation. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations. The five hydroxy groups at C1,C6,C7,C14 and C15 adopt α,β, β,β,β-orientations respectively. Bond lengths and angles are within expected ranges (Allen et al., 1987), with average values (Å): Csp3—Csp3 = 1.544 (2), Csp3—Csp2 = 1.514 (2), Csp2—Csp2 (CC) = 1.322 (2), Csp3—O = 1.441 (2).

The title compound has ten chiral centers at C1(S), C5(R), C6(S), C7(S), C8(R), C9(S), C10(S), C13(S) C14(R) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed that this compound belongs to the ent-kaurane series as found in genus Isodon (Sun et al., 2001), rather than to the kaurane series, allowing us to assign the correct configuration. In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) are effective in the stabilization of the structure and are responsible for the formation of a two-dimensional network (Fig. 2).

Experimental

The dried and crushed leaves of Isodon japonica var. glaucocalyx (21 kg), (collected from Huixian Prefecture, Henan Province, China) were extracted three times with Me2CO/H2O (7:3, v/v) at room temperature over a period of seven days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from Me2CO/MeOH (10:1), giving 28 mg of compound (I) (m.p. 527–529 K; optical rotation: [α]D22 -30° (c 0.15, MeOH). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the compound in MeOH at room temperature.

Refinement

Hydroxy H atoms were located by difference methods and were included with positional and isotropic displacement parameters refining. With H50 the positional parameters were fixed in the final cycles of refinement. All other H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.98Å (CH3), 0.99Å (CH2), and 1.00Å (CH), and with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds having known stereochemistry.

Figures

Fig. 1.
Molecular configuration and atom numbering scheme for compound (I). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A perspective view of the crystal packing of (I) showing the intermolecular hydrogen bonds as dashed lines.

Crystal data

C20H30O6Dx = 1.366 Mg m3
Mr = 366.44Melting point = 527–529 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6155 reflections
a = 8.0007 (3) Åθ = 3.2–27.5°
b = 10.7161 (6) ŵ = 0.10 mm1
c = 20.7759 (9) ÅT = 93 K
V = 1781.25 (14) Å3Block, colorless
Z = 40.43 × 0.37 × 0.23 mm
F(000) = 792

Data collection

Rigaku AFC10 Saturn724+ diffractometer2263 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.029
graphiteθmax = 27.5°, θmin = 3.2°
Detector resolution: 28.5714 pixels mm-1h = −10→10
ω scansk = −9→13
14459 measured reflectionsl = −26→26
2336 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0336P)2 + 0.69P] where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.65937 (15)0.64947 (11)0.44833 (6)0.0133 (3)
O20.13629 (15)0.61728 (12)0.40576 (6)0.0146 (3)
H2O0.06960.59240.43550.018*
O30.75905 (16)0.31571 (12)0.43788 (6)0.0137 (3)
O40.86693 (15)0.54558 (12)0.49981 (7)0.0145 (3)
O50.70889 (15)0.63306 (12)0.60424 (6)0.0152 (3)
H5O0.69920.71260.60540.018*
O60.58870 (16)0.25696 (11)0.54382 (6)0.0128 (3)
C10.2461 (2)0.51713 (16)0.38625 (8)0.0117 (3)
H10.19070.43590.39660.014*
C20.2581 (2)0.52931 (17)0.31315 (8)0.0161 (4)
H2A0.14610.51450.29430.019*
H2B0.29140.61580.30230.019*
C30.3817 (2)0.43951 (19)0.28259 (8)0.0175 (4)
H3A0.38540.45480.23560.021*
H3B0.34220.35290.28940.021*
C40.5584 (2)0.45268 (18)0.31027 (8)0.0154 (4)
C50.5441 (2)0.43633 (16)0.38459 (8)0.0109 (3)
H50.50230.34930.39100.013*
C60.7153 (2)0.44034 (16)0.41879 (8)0.0118 (3)
H60.80110.47160.38770.014*
C70.7053 (2)0.53030 (16)0.47533 (8)0.0111 (3)
C80.5752 (2)0.49180 (16)0.52654 (8)0.0108 (3)
C90.4051 (2)0.46841 (16)0.49127 (8)0.0096 (3)
H90.38990.37600.48780.012*
C100.4175 (2)0.52120 (15)0.42116 (8)0.0104 (3)
C110.2560 (2)0.51986 (16)0.53022 (8)0.0129 (3)
H11A0.15280.47830.51500.015*
H11B0.24470.61010.52090.015*
C120.2689 (2)0.50260 (18)0.60383 (8)0.0147 (4)
H12A0.23070.41750.61520.018*
H12B0.19350.56290.62520.018*
C130.4496 (2)0.52170 (17)0.62953 (8)0.0138 (3)
H130.45030.56530.67210.017*
C140.5502 (2)0.59337 (16)0.57895 (8)0.0124 (3)
H140.48510.66580.56180.015*
C150.6290 (2)0.37800 (16)0.56886 (8)0.0121 (3)
H150.75240.38250.57630.014*
C160.5398 (2)0.39814 (17)0.63254 (8)0.0134 (3)
C170.5401 (2)0.31766 (18)0.68075 (9)0.0172 (4)
H17A0.47860.33530.71880.021*
H17B0.60180.24220.67740.021*
C180.6668 (2)0.34633 (19)0.28388 (9)0.0206 (4)
H18A0.66800.35000.23680.025*
H18B0.62050.26610.29780.025*
H18C0.78110.35500.30020.025*
C190.6374 (3)0.57664 (19)0.28789 (9)0.0206 (4)
H19A0.55950.64530.29620.025*
H19B0.66130.57220.24170.025*
H19C0.74150.59110.31160.025*
C200.4872 (2)0.65416 (16)0.42727 (9)0.0124 (3)
H20A0.48020.69700.38510.015*
H20B0.41980.70200.45870.015*
H3O0.858 (4)0.310 (2)0.4432 (12)0.028 (7)*
H4O0.860 (3)0.577 (2)0.5363 (12)0.031 (7)*
H6O0.641 (3)0.254 (2)0.5097 (11)0.015 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0098 (5)0.0100 (6)0.0200 (6)−0.0011 (5)−0.0014 (5)0.0025 (5)
O20.0112 (6)0.0128 (6)0.0199 (6)0.0031 (5)0.0006 (5)0.0017 (5)
O30.0103 (6)0.0113 (6)0.0195 (6)0.0023 (5)−0.0001 (5)0.0013 (5)
O40.0082 (5)0.0171 (6)0.0180 (6)−0.0010 (5)−0.0009 (5)−0.0017 (5)
O50.0142 (6)0.0120 (6)0.0195 (6)−0.0022 (5)−0.0040 (5)−0.0024 (5)
O60.0134 (6)0.0101 (6)0.0147 (6)−0.0004 (5)0.0021 (5)−0.0012 (5)
C10.0094 (7)0.0102 (8)0.0153 (8)0.0010 (7)−0.0013 (7)0.0001 (6)
C20.0149 (8)0.0188 (9)0.0145 (8)0.0016 (8)−0.0034 (7)0.0028 (7)
C30.0176 (9)0.0227 (10)0.0123 (8)0.0021 (8)−0.0012 (7)0.0004 (7)
C40.0145 (8)0.0192 (9)0.0126 (8)0.0018 (8)0.0014 (7)0.0005 (7)
C50.0107 (8)0.0096 (8)0.0125 (7)0.0000 (7)0.0002 (6)−0.0001 (6)
C60.0097 (7)0.0111 (8)0.0146 (8)0.0005 (6)0.0011 (6)0.0014 (7)
C70.0077 (7)0.0105 (8)0.0151 (8)0.0001 (6)−0.0010 (6)0.0013 (7)
C80.0090 (7)0.0104 (8)0.0129 (8)0.0005 (6)−0.0014 (6)0.0002 (6)
C90.0078 (7)0.0092 (8)0.0119 (7)0.0002 (6)−0.0003 (6)0.0002 (6)
C100.0085 (7)0.0096 (8)0.0131 (8)0.0005 (6)0.0000 (6)−0.0004 (6)
C110.0097 (8)0.0133 (8)0.0156 (8)0.0011 (7)0.0007 (7)−0.0001 (7)
C120.0101 (8)0.0190 (9)0.0151 (8)0.0014 (7)0.0023 (7)−0.0007 (7)
C130.0143 (8)0.0139 (8)0.0131 (8)−0.0011 (7)−0.0002 (7)−0.0024 (7)
C140.0108 (7)0.0115 (8)0.0149 (8)0.0000 (6)−0.0007 (6)−0.0013 (7)
C150.0104 (7)0.0102 (8)0.0156 (8)−0.0008 (7)−0.0017 (6)−0.0003 (7)
C160.0105 (8)0.0153 (9)0.0143 (8)−0.0022 (7)−0.0017 (6)−0.0020 (7)
C170.0173 (9)0.0183 (9)0.0159 (8)0.0003 (8)−0.0003 (7)−0.0006 (7)
C180.0208 (9)0.0258 (10)0.0151 (8)0.0043 (9)0.0021 (8)−0.0030 (8)
C190.0187 (9)0.0256 (10)0.0175 (8)−0.0005 (8)0.0041 (8)0.0059 (8)
C200.0087 (7)0.0110 (8)0.0174 (8)0.0008 (6)−0.0012 (6)0.0019 (7)

Geometric parameters (Å, °)

O1—C71.442 (2)C8—C141.553 (2)
O1—C201.447 (2)C8—C151.564 (2)
O2—C11.445 (2)C8—C91.566 (2)
O2—H2O0.8580C9—C111.543 (2)
O3—C61.437 (2)C9—C101.566 (2)
O3—H3O0.80 (3)C9—H91.0000
O4—C71.399 (2)C10—C201.535 (2)
O4—H4O0.83 (3)C11—C121.544 (2)
O5—C141.439 (2)C11—H11A0.9900
O5—H5O0.8566C11—H11B0.9900
O6—C151.434 (2)C12—C131.555 (2)
O6—H6O0.83 (2)C12—H12A0.9900
C1—C21.527 (2)C12—H12B0.9900
C1—C101.552 (2)C13—C161.509 (2)
C1—H11.0000C13—C141.530 (2)
C2—C31.519 (3)C13—H131.0000
C2—H2A0.9900C14—H141.0000
C2—H2B0.9900C15—C161.519 (2)
C3—C41.533 (3)C15—H151.0000
C3—H3A0.9900C16—C171.322 (2)
C3—H3B0.9900C17—H17A0.9500
C4—C181.533 (3)C17—H17B0.9500
C4—C191.543 (3)C18—H18A0.9800
C4—C51.558 (2)C18—H18B0.9800
C5—C61.543 (2)C18—H18C0.9800
C5—C101.559 (2)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.522 (2)C19—H19C0.9800
C6—H61.0000C20—H20A0.9900
C7—C81.545 (2)C20—H20B0.9900
C7—O1—C20113.03 (13)C20—C10—C1112.68 (13)
C1—O2—H2O110.4C20—C10—C5110.23 (13)
C6—O3—H3O110.8 (18)C1—C10—C5109.26 (13)
C7—O4—H4O108.3 (18)C20—C10—C9106.35 (14)
C14—O5—H5O103.0C1—C10—C9111.64 (13)
C15—O6—H6O103.4 (17)C5—C10—C9106.48 (13)
O2—C1—C2104.68 (14)C9—C11—C12115.16 (14)
O2—C1—C10112.67 (13)C9—C11—H11A108.5
C2—C1—C10114.03 (14)C12—C11—H11A108.5
O2—C1—H1108.4C9—C11—H11B108.5
C2—C1—H1108.4C12—C11—H11B108.5
C10—C1—H1108.4H11A—C11—H11B107.5
C3—C2—C1113.72 (15)C11—C12—C13112.73 (14)
C3—C2—H2A108.8C11—C12—H12A109.0
C1—C2—H2A108.8C13—C12—H12A109.0
C3—C2—H2B108.8C11—C12—H12B109.0
C1—C2—H2B108.8C13—C12—H12B109.0
H2A—C2—H2B107.7H12A—C12—H12B107.8
C2—C3—C4112.67 (15)C16—C13—C14102.54 (14)
C2—C3—H3A109.1C16—C13—C12110.09 (14)
C4—C3—H3A109.1C14—C13—C12108.62 (14)
C2—C3—H3B109.1C16—C13—H13111.7
C4—C3—H3B109.1C14—C13—H13111.7
H3A—C3—H3B107.8C12—C13—H13111.7
C3—C4—C18108.61 (15)O5—C14—C13111.21 (14)
C3—C4—C19110.12 (15)O5—C14—C8110.47 (13)
C18—C4—C19107.50 (15)C13—C14—C8101.39 (13)
C3—C4—C5107.07 (14)O5—C14—H14111.1
C18—C4—C5108.20 (15)C13—C14—H14111.1
C19—C4—C5115.19 (15)C8—C14—H14111.1
C6—C5—C4112.82 (14)O6—C15—C16109.80 (14)
C6—C5—C10109.63 (13)O6—C15—C8116.06 (13)
C4—C5—C10117.72 (14)C16—C15—C8104.45 (14)
C6—C5—H5105.2O6—C15—H15108.8
C4—C5—H5105.2C16—C15—H15108.8
C10—C5—H5105.2C8—C15—H15108.8
O3—C6—C7112.87 (14)C17—C16—C13127.20 (17)
O3—C6—C5108.51 (13)C17—C16—C15124.52 (17)
C7—C6—C5109.07 (13)C13—C16—C15108.26 (14)
O3—C6—H6108.8C16—C17—H17A120.0
C7—C6—H6108.8C16—C17—H17B120.0
C5—C6—H6108.8H17A—C17—H17B120.0
O4—C7—O1105.86 (13)C4—C18—H18A109.5
O4—C7—C6107.85 (13)C4—C18—H18B109.5
O1—C7—C6105.90 (13)H18A—C18—H18B109.5
O4—C7—C8113.82 (14)C4—C18—H18C109.5
O1—C7—C8109.42 (13)H18A—C18—H18C109.5
C6—C7—C8113.43 (14)H18B—C18—H18C109.5
C7—C8—C14112.50 (14)C4—C19—H19A109.5
C7—C8—C15114.19 (13)C4—C19—H19B109.5
C14—C8—C15100.83 (13)H19A—C19—H19B109.5
C7—C8—C9107.83 (13)C4—C19—H19C109.5
C14—C8—C9109.18 (13)H19A—C19—H19C109.5
C15—C8—C9112.19 (13)H19B—C19—H19C109.5
C11—C9—C10114.06 (13)O1—C20—C10109.79 (13)
C11—C9—C8111.66 (13)O1—C20—H20A109.7
C10—C9—C8108.81 (13)C10—C20—H20A109.7
C11—C9—H9107.3O1—C20—H20B109.7
C10—C9—H9107.3C10—C20—H20B109.7
C8—C9—H9107.3H20A—C20—H20B108.2
O2—C1—C2—C3174.61 (14)C6—C5—C10—C2055.37 (17)
C10—C1—C2—C351.0 (2)C4—C5—C10—C20−75.36 (18)
C1—C2—C3—C4−56.8 (2)C6—C5—C10—C1179.71 (13)
C2—C3—C4—C18171.78 (15)C4—C5—C10—C148.98 (19)
C2—C3—C4—C19−70.76 (19)C6—C5—C10—C9−59.58 (16)
C2—C3—C4—C555.2 (2)C4—C5—C10—C9169.69 (14)
C3—C4—C5—C6176.91 (14)C11—C9—C10—C2076.19 (16)
C18—C4—C5—C660.02 (19)C8—C9—C10—C20−49.19 (16)
C19—C4—C5—C6−60.3 (2)C11—C9—C10—C1−47.07 (18)
C3—C4—C5—C10−53.8 (2)C8—C9—C10—C1−172.46 (13)
C18—C4—C5—C10−170.73 (14)C11—C9—C10—C5−166.25 (14)
C19—C4—C5—C1069.0 (2)C8—C9—C10—C568.36 (15)
C4—C5—C6—O3−105.74 (16)C10—C9—C11—C12−162.27 (14)
C10—C5—C6—O3120.97 (14)C8—C9—C11—C12−38.4 (2)
C4—C5—C6—C7130.94 (15)C9—C11—C12—C1338.2 (2)
C10—C5—C6—C7−2.36 (18)C11—C12—C13—C16−93.00 (18)
C20—O1—C7—O4−173.34 (13)C11—C12—C13—C1418.5 (2)
C20—O1—C7—C672.31 (16)C16—C13—C14—O5−73.63 (16)
C20—O1—C7—C8−50.29 (17)C12—C13—C14—O5169.86 (13)
O3—C6—C7—O467.47 (17)C16—C13—C14—C843.82 (16)
C5—C6—C7—O4−171.83 (13)C12—C13—C14—C8−72.69 (16)
O3—C6—C7—O1−179.55 (13)C7—C8—C14—O5−50.02 (18)
C5—C6—C7—O1−58.86 (16)C15—C8—C14—O572.05 (16)
O3—C6—C7—C8−59.54 (18)C9—C8—C14—O5−169.69 (13)
C5—C6—C7—C861.16 (18)C7—C8—C14—C13−168.00 (14)
O4—C7—C8—C1463.85 (19)C15—C8—C14—C13−45.94 (16)
O1—C7—C8—C14−54.34 (17)C9—C8—C14—C1372.33 (16)
C6—C7—C8—C14−172.34 (14)C7—C8—C15—O6−87.44 (17)
O4—C7—C8—C15−50.29 (19)C14—C8—C15—O6151.70 (14)
O1—C7—C8—C15−168.48 (13)C9—C8—C15—O635.65 (19)
C6—C7—C8—C1573.52 (18)C7—C8—C15—C16151.54 (14)
O4—C7—C8—C9−175.70 (13)C14—C8—C15—C1630.67 (16)
O1—C7—C8—C966.11 (16)C9—C8—C15—C16−85.38 (16)
C6—C7—C8—C9−51.89 (18)C14—C13—C16—C17156.98 (18)
C7—C8—C9—C11−139.59 (14)C12—C13—C16—C17−87.6 (2)
C14—C8—C9—C11−17.08 (18)C14—C13—C16—C15−24.71 (17)
C15—C8—C9—C1193.82 (16)C12—C13—C16—C1590.74 (16)
C7—C8—C9—C10−12.81 (17)O6—C15—C16—C1749.2 (2)
C14—C8—C9—C10109.70 (15)C8—C15—C16—C17174.27 (17)
C15—C8—C9—C10−139.41 (14)O6—C15—C16—C13−129.19 (14)
O2—C1—C10—C20−41.24 (19)C8—C15—C16—C13−4.09 (17)
C2—C1—C10—C2077.89 (18)C7—O1—C20—C10−16.70 (18)
O2—C1—C10—C5−164.13 (13)C1—C10—C20—O1−168.75 (13)
C2—C1—C10—C5−45.00 (19)C5—C10—C20—O1−46.40 (18)
O2—C1—C10—C978.35 (17)C9—C10—C20—O168.64 (16)
C2—C1—C10—C9−162.51 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O6i0.80 (3)2.00 (3)2.7761 (18)164 (3)
O4—H4O···O50.83 (3)1.95 (3)2.6806 (18)146 (2)
O5—H5O···O2ii0.861.902.7455 (18)167
O6—H6O···O30.83 (2)1.88 (2)2.6642 (18)157 (2)

Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2022).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Mori, S., Shudo, K., Ageta, T., Koizumi, T. & Okamoto, T. (1970). Chem. Pharm. Bull.18, 871–883.
  • Rigaku (2008). CrystalClear Rigaku Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species pp. 4–17, 241. Beijing: Science Press.
  • Wang, X. R., Wang, H. P., Hu, H. P., Sun, H. D., Wang, S. Q. & Ueda, S. (1995). Phytochemistry, 38, 921–926.
  • Yan, F. L., Wang, C. M., Guo, L. Q., Zhang, J. X. & Sun, H. D. (2008). J. Chem. Res. pp. 522–524.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography