PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o14.
Published online 2009 December 4. doi:  10.1107/S1600536809051083
PMCID: PMC2980238

4-Chloro-2-methyl-N-(3-methyl­phen­yl)benzene­sulfonamide

Abstract

The N—H bond in the title compound, C14H14ClNO2S, the dihedral angle between the two benzene rings is 75.5 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H(...)O hydrogen bonds.

Related literature

For the preparation, see: Savitha & Gowda (2006 [triangle]). For our study of the effect of substituents on the crystal structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a [triangle],b [triangle],c [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o14-scheme1.jpg

Experimental

Crystal data

  • C14H14ClNO2S
  • M r = 295.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o14-efi1.jpg
  • a = 7.8830 (7) Å
  • b = 11.602 (1) Å
  • c = 15.645 (2) Å
  • β = 90.593 (8)°
  • V = 1430.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 299 K
  • 0.48 × 0.28 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.828, T max = 0.953
  • 5563 measured reflections
  • 2925 independent reflections
  • 1980 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.156
  • S = 1.03
  • 2925 reflections
  • 177 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051083/ci2978sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051083/ci2978Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b,c), in the present work the structure of 4-chloro-2-methyl-N- (3-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond is anti to the meta-methyl group in the aniline benzene ring. The molecule is bent at the N atom with the C1—S1—N1—C7 torsion angle of 77.2 (3)°, compared to the values of 73.0 (3)° in 4-chloro-2-methyl-N-(2-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2009c), 74.8°(4) in 2-methyl-4-chloro-N-(2-chlorophenyl)benzenesulfonamide (III) (Gowda et al., 2009b) and -61.9 (4)° (molecule 1) and 69.7 (4)° (molecule 2) in the two independent molecules of 4-chloro-2-methyl-N- (phenyl)benzenesulfonamide (III) (Gowda et al., 2009a). The two benzene rings are tilted relative to each other by 75.5 (1)°, compared to the values of 45.8 (1)° in (II), 45.5 (2)° in (III), and 86.6 (2)° (molecule 1) and 83.0 (2)° (molecule 2) in the two independent molecules of (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

A solution of m-chlorotoluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chloro-2-methylbenzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N- (3-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its positional parameters were refined with the N-H distance restrained to 0.82 (4) Å. The other H atoms were positioned with idealized geometry using a riding model [C–H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H14ClNO2SF(000) = 616
Mr = 295.77Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2116 reflections
a = 7.8830 (7) Åθ = 2.6–27.9°
b = 11.602 (1) ŵ = 0.41 mm1
c = 15.645 (2) ÅT = 299 K
β = 90.593 (8)°Prism, colourless
V = 1430.8 (3) Å30.48 × 0.28 × 0.12 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2925 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
graphiteRint = 0.014
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −9→6
Tmin = 0.828, Tmax = 0.953k = −11→14
5563 measured reflectionsl = −19→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0757P)2 + 0.6262P] where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max = 0.020
177 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6521 (3)0.1989 (2)0.83780 (16)0.0484 (6)
C20.8133 (4)0.1933 (2)0.87588 (18)0.0552 (7)
C30.9404 (4)0.2588 (3)0.8394 (2)0.0679 (8)
H31.04940.25630.86270.081*
C40.9084 (4)0.3278 (3)0.7692 (2)0.0675 (8)
C50.7500 (5)0.3331 (3)0.7328 (2)0.0725 (9)
H50.72920.38020.68580.087*
C60.6223 (4)0.2679 (3)0.76688 (18)0.0616 (8)
H60.51450.27000.74210.074*
C70.3599 (3)0.2701 (2)0.99538 (18)0.0509 (6)
C80.3539 (3)0.3658 (2)0.94325 (19)0.0584 (7)
H80.40120.36220.88910.070*
C90.2787 (4)0.4672 (3)0.9703 (2)0.0630 (8)
C100.2096 (5)0.4692 (3)1.0506 (2)0.0882 (11)
H100.15770.53621.07000.106*
C110.2159 (5)0.3740 (4)1.1028 (2)0.0929 (12)
H110.16980.37761.15720.111*
C120.2895 (4)0.2737 (3)1.07543 (19)0.0663 (8)
H120.29190.20901.11050.080*
C130.8530 (4)0.1198 (3)0.9571 (2)0.0703 (9)
H13A0.83130.04000.94510.084*
H13B0.78230.14481.00320.084*
H13C0.97010.12950.97320.084*
C140.2762 (5)0.5716 (3)0.9131 (3)0.0857 (11)
H14A0.20780.55600.86340.103*
H14B0.38980.58960.89610.103*
H14C0.22930.63590.94350.103*
N10.4428 (4)0.1662 (2)0.97214 (17)0.0692 (8)
H1N0.445 (4)0.118 (3)1.011 (2)0.083*
O10.3367 (3)0.1432 (2)0.82291 (15)0.0752 (6)
O20.5297 (3)0.00166 (16)0.88893 (14)0.0708 (6)
Cl11.07032 (16)0.41278 (11)0.72879 (9)0.1237 (5)
S10.47841 (9)0.11958 (6)0.87689 (5)0.0572 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0546 (15)0.0446 (13)0.0461 (14)0.0116 (12)−0.0020 (11)−0.0040 (12)
C20.0599 (16)0.0479 (15)0.0576 (16)0.0147 (13)−0.0036 (13)−0.0032 (13)
C30.0566 (17)0.0603 (19)0.087 (2)0.0091 (15)0.0030 (16)−0.0136 (17)
C40.077 (2)0.0543 (17)0.071 (2)0.0048 (15)0.0271 (17)−0.0090 (16)
C50.099 (3)0.066 (2)0.0528 (17)0.0143 (19)0.0131 (17)0.0072 (15)
C60.0692 (19)0.0651 (18)0.0504 (16)0.0146 (15)−0.0034 (14)0.0023 (14)
C70.0479 (14)0.0486 (15)0.0563 (16)−0.0009 (11)0.0032 (12)−0.0036 (12)
C80.0590 (16)0.0532 (17)0.0631 (18)0.0017 (13)0.0068 (14)−0.0016 (14)
C90.0591 (18)0.0513 (16)0.078 (2)0.0032 (13)−0.0098 (15)−0.0089 (15)
C100.104 (3)0.081 (3)0.080 (3)0.036 (2)−0.004 (2)−0.022 (2)
C110.107 (3)0.108 (3)0.064 (2)0.036 (2)0.015 (2)−0.009 (2)
C120.0658 (18)0.073 (2)0.0604 (18)0.0085 (15)0.0035 (15)0.0038 (15)
C130.0676 (19)0.0651 (19)0.078 (2)0.0248 (15)−0.0330 (16)0.0020 (16)
C140.094 (3)0.0524 (19)0.111 (3)0.0071 (18)−0.014 (2)0.0019 (19)
N10.095 (2)0.0514 (15)0.0613 (16)0.0169 (14)0.0169 (14)0.0085 (12)
O10.0598 (12)0.0789 (15)0.0866 (16)0.0024 (11)−0.0155 (11)−0.0093 (12)
O20.0932 (15)0.0446 (11)0.0749 (14)0.0048 (10)0.0039 (11)−0.0041 (10)
Cl10.1293 (10)0.1064 (9)0.1367 (11)−0.0264 (7)0.0632 (8)−0.0064 (7)
S10.0630 (5)0.0485 (4)0.0600 (5)0.0044 (3)−0.0008 (3)−0.0033 (3)

Geometric parameters (Å, °)

C1—C61.387 (4)C9—C101.375 (5)
C1—C21.399 (4)C9—C141.506 (5)
C1—S11.764 (3)C10—C111.375 (5)
C2—C31.386 (4)C10—H100.93
C2—C131.560 (4)C11—C121.371 (5)
C3—C41.380 (5)C11—H110.93
C3—H30.93C12—H120.93
C4—C51.369 (5)C13—H13A0.96
C4—Cl11.737 (3)C13—H13B0.96
C5—C61.371 (4)C13—H13C0.96
C5—H50.93C14—H14A0.96
C6—H60.93C14—H14B0.96
C7—C121.375 (4)C14—H14C0.96
C7—C81.378 (4)N1—S11.613 (3)
C7—N11.420 (3)N1—H1N0.82 (4)
C8—C91.386 (4)O1—S11.420 (2)
C8—H80.93O2—S11.438 (2)
C6—C1—C2120.9 (3)C9—C10—H10119.4
C6—C1—S1116.9 (2)C12—C11—C10120.6 (3)
C2—C1—S1122.2 (2)C12—C11—H11119.7
C3—C2—C1117.2 (3)C10—C11—H11119.7
C3—C2—C13119.7 (3)C11—C12—C7119.1 (3)
C1—C2—C13123.1 (3)C11—C12—H12120.4
C4—C3—C2121.2 (3)C7—C12—H12120.4
C4—C3—H3119.4C2—C13—H13A109.5
C2—C3—H3119.4C2—C13—H13B109.5
C5—C4—C3121.0 (3)H13A—C13—H13B109.5
C5—C4—Cl1119.6 (3)C2—C13—H13C109.5
C3—C4—Cl1119.3 (3)H13A—C13—H13C109.5
C4—C5—C6119.0 (3)H13B—C13—H13C109.5
C4—C5—H5120.5C9—C14—H14A109.5
C6—C5—H5120.5C9—C14—H14B109.5
C5—C6—C1120.7 (3)H14A—C14—H14B109.5
C5—C6—H6119.7C9—C14—H14C109.5
C1—C6—H6119.7H14A—C14—H14C109.5
C12—C7—C8120.2 (3)H14B—C14—H14C109.5
C12—C7—N1116.7 (3)C7—N1—S1127.3 (2)
C8—C7—N1123.0 (3)C7—N1—H1N114 (3)
C7—C8—C9121.0 (3)S1—N1—H1N116 (3)
C7—C8—H8119.5O1—S1—O2118.67 (14)
C9—C8—H8119.5O1—S1—N1109.96 (14)
C10—C9—C8117.9 (3)O2—S1—N1104.43 (13)
C10—C9—C14121.7 (3)O1—S1—C1107.55 (13)
C8—C9—C14120.3 (3)O2—S1—C1108.88 (13)
C11—C10—C9121.1 (3)N1—S1—C1106.78 (14)
C11—C10—H10119.4
C6—C1—C2—C3−0.3 (4)C8—C9—C10—C110.5 (5)
S1—C1—C2—C3179.6 (2)C14—C9—C10—C11−178.6 (4)
C6—C1—C2—C13178.3 (3)C9—C10—C11—C12−0.9 (6)
S1—C1—C2—C13−1.7 (4)C10—C11—C12—C71.1 (6)
C1—C2—C3—C40.8 (4)C8—C7—C12—C11−0.9 (5)
C13—C2—C3—C4−177.8 (3)N1—C7—C12—C11176.6 (3)
C2—C3—C4—C5−0.5 (5)C12—C7—N1—S1157.2 (2)
C2—C3—C4—Cl1177.3 (2)C8—C7—N1—S1−25.5 (4)
C3—C4—C5—C6−0.5 (5)C7—N1—S1—O1−39.2 (3)
Cl1—C4—C5—C6−178.2 (2)C7—N1—S1—O2−167.5 (3)
C4—C5—C6—C11.0 (4)C7—N1—S1—C177.2 (3)
C2—C1—C6—C5−0.5 (4)C6—C1—S1—O11.2 (2)
S1—C1—C6—C5179.5 (2)C2—C1—S1—O1−178.8 (2)
C12—C7—C8—C90.5 (4)C6—C1—S1—O2130.9 (2)
N1—C7—C8—C9−176.8 (3)C2—C1—S1—O2−49.0 (3)
C7—C8—C9—C10−0.2 (4)C6—C1—S1—N1−116.8 (2)
C7—C8—C9—C14178.9 (3)C2—C1—S1—N163.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (4)2.10 (4)2.925 (3)176 (3)

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2978).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o717. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o800. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography