PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o212–o213.
Published online 2009 December 19. doi:  10.1107/S1600536809053653
PMCID: PMC2980237

7-(4-Methoxy­phen­yl)-5-methyl-9-phenyl-7H-pyrrolo[2′,3′:4,5]pyrimido[1,6-d]tetrazole

Abstract

The title compound, C20H16N6O, is composed of a tetra­zolo ring and a 4-methoxy­phenyl and a benzene-substituted pyrrole ring at the 7 and 9 positions fused to a pyrimidine ring in a nearly planar fashion [maximum deviation of 0.018 (1) Å for the fused ring system]. A methyl group at the 5 position is also in the plane of the hetero cyclic system. The dihedral angle between the mean planes of the benzene and 4-methoxy­phenyl rings is 40.4 (2)°. The dihedral angles between the mean planes of the pyrimidine and the benzene and 4-methoxy­phenyl rings are 15.6 (5)° and 52.6 (7)°, respectively. A weak intra­molecular C—H(...)N hydrogen bond inter­action, which forms an S(7) graph-set motif, helps to establish the relative conformations of the tetrazolo and benzene rings. In the crystal, weak inter­molecular C—H(...)O, C—H(...)π and π–π stacking inter­actions [centroid–centroid distances = 3.5270 (16), 3.5113 (16), 3.7275 (17) and 3.7866 (17) Å] link the mol­ecules into a two-dimensional array obliquely parallel to (101) and propagating along the b axis.

Related literature

For the biological activity of fused tetra­zolopyrimidines, see: Wilkinson (1992 [triangle]); Omer et al. (1991 [triangle]); Schram et al. (1975 [triangle]). Fused pyrimidines with a halogen at the 2- or 4- position seem to be more labile towards a nucleophilic substitution reaction with reagents such as piperadine, piperazine, morpholine, hydrazine and azides, forming potent bi- and triheterocycles, see: Dave & Shah (2000 [triangle], 2002 [triangle]); Peinador et al. (1992 [triangle]); Schneller & Clough (1992 [triangle]); Shishoo & Jain (1992 [triangle]). For the importance of the reduction of tetra­zolopyrimidines via azido­lysis in the development of synthetically important 4-amino­pyrimidines, see: Shishoo & Jain (1992 [triangle]); Hand & Backer (1984 [triangle]). For nucleophilic substitution reactions in pyrrolo[2,3-e] pyrimidines, see: Dave & Shah (2002 [triangle]); Ali & Swealan (1992 [triangle]). For related structures, see: Jotani & Baldaniya (2007 [triangle], 2008 [triangle]); Hou et al. (2009 [triangle]); Baldaniya & Jotani (2008 [triangle]); Malone et al. (1997 [triangle]). For the synthesis, see: Shah (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For tetrazolo ring formation, see: Bourgurgnon et al. (1975 [triangle]); Robba et al. (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o212-scheme1.jpg

Experimental

Crystal data

  • C20H16N6O
  • M r = 356.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o212-efi1.jpg
  • a = 13.738 (2) Å
  • b = 7.032 (3) Å
  • c = 19.4350 (3) Å
  • β = 110.217 (2)°
  • V = 1761.9 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.47 × 0.35 × 0.2 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.96, T max = 0.98
  • 42323 measured reflections
  • 5137 independent reflections
  • 3694 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.129
  • S = 1.04
  • 5137 reflections
  • 247 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-32 and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053653/gw2072sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053653/gw2072Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Department of Science and Technology (DST) and the SAIF, IIT Madras, Chennai, India, for the intensity data collection.

supplementary crystallographic information

Comment

Fused tetrazolopyrimidines are important to the activities of a variety of biological substances (Willkinson, 1992; Omer et al., 1991; Schram et al., 1975). Moreover, fused pyrimidines having a halogen at the 2- or 4- position seem to be more labile towards a nucleophilic substitution reaction with reagents such as piperadine, piperazine, morpholine, hydrazine and azides to form potent bi and triheterocycles (Dave & Shah, 2002; Peinador et al., 1992; Schneller & Clough, 1992; Shishoo & Jain, 1992). The reduction of tetrazolopyrimidines via azidolysis studies have been shown to be to attractive to development of synthetically important 4-aminopyrimidines (Shishoo & Jain, 1992; Hand & Backer, 1984). The treatment of sodium azide with 4-chloropyrrolo[2,3-e] pyrimidine can result the formation of either an azido group or tetrazole ring upon a fused pyrimidine ring. Such nucleophilic substitution reactions have rarely been attempted in pyrrolo[2,3-e] pyrimidines (Dave & Shah, 2002; Ali & Swealan, 1992). In view of the importance of these molecules, a crystal structure of the title compound, C20H16N6O, (I) has been determined.

The title compound, C20H16N6O, (I), is composed of a tetrazolo ring and a 4-methoxyphenyl and benzene substituted pyrrole ring at the 7 and 9 position fused to a pyrimidine ring in a nearly planar fashion (Fig. 1). The r.m.s.deviation of atoms of the fused ring from the mean plane through the heterotricyclic system is 0.0085 Å, with a maximum deviation of -0.018 (1) and 0.013 (1) Å for atoms C2 and C3 respectively. Bond lengths and angles for the fused pyrrole and tetrazole rings in (I) are normal and similar to that observed for a related structure. The dihedral angles between the mean planes of fused pyrimidine and tetrazole rings with that of the pyrrole ring are 1.26 (6) ° and 1.13 (7)°, respectively. A methyl group at the 5 position is also in the plane of the pyrimidine ring. The dihedral angle between the mean planes of the benzene and 4-methoxyphenyl rings is 40.4 (2)°. The angles between the mean planes of the pyrimidine and the benzene and 4-methoxyphenyl rings are 15.6 (5)° and 52.6 (7)°, respectively. A weak intramolecular C13–H13···N6 hydrogen bond interaction, which forms an S(7) graph set, helps stabilize the separation angle between the tetrazolo and benzene rings. Weak intermolecular C12–H12···O1 (Fig. 2), C–H···π-ring (C7–H7B(H7C)···Cg4 [= 3.620 (2) (3.554 (2) Å; 1 - x, 1 - y, 1 - z (1 - x, 2 - y, 1 - z); where Cg4 = C8–C13 ring centroid; Table 1] and π–π [Cg1···Cg2; = 3.5270 (16)Å & 3.5113 (16) Å,1 - x, 1 - y, 1 - x & 1 - x, 2 - y, 1 - z; Cg2···Cg3; = 3.7275 (17) Å, 1 - x, 2 - y, 1 - z; Cg3···Cg1; = 3.7866 (17) Å, 1 - x, 1 - y, 1 - z; where Cg1 = N1/C1–C4, Cg2 = N3–N6/C6, Cg3 = N2/C1–C5] stacking interactions (Fig. 3) help to link the molecules into a 2-D array obliquely parallel to (101) and propagating along the b axis.

Experimental

The title compound was synthesized according to method of Shah (2009). A mixture of sodium azide (0.011 mole), ammonium chloride (0.011 mole) and 2-methyl-5-phenyl-7-(4-methoxyphenyl)-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (0.01 mole) in DMSO (20 ml) was stirred for for 2 h at 363 K to obtain the title compound (I). Colorless platlike single crystals, suitable for X-ray diffraction were grown from a solution of 1,4-dioxane.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.18–1.50Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom labelling scheme and 50% probability displacement ellipsoids. The dashed line represents a weak intramolecular C–H···N hydrogen bond interaction.
Fig. 2.
Crystal packing of (I), showing weak intramolecular C–H···N and intermolecular C–H···O hydrogen bond interactions as dashed lines.
Fig. 3.
The molecular packing of (I), showing π–π stacking interactions as dashed lines forming chains of molecules along [1 0 1] plane if the unit cell.

Crystal data

C20H16N6OF(000) = 744
Mr = 356.39Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5176 reflections
a = 13.738 (2) Åθ = 2.2–31.3°
b = 7.032 (3) ŵ = 0.09 mm1
c = 19.4350 (3) ÅT = 293 K
β = 110.217 (2)°Plate, yellow
V = 1761.9 (8) Å30.47 × 0.35 × 0.2 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer5137 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
graphiteRint = 0.030
ω and [var phi] scanθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −19→19
Tmin = 0.96, Tmax = 0.98k = −4→9
42323 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.129w = 1/[σ2(Fo2) + (0.0656P)2 + 0.2469P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5137 reflectionsΔρmax = 0.29 e Å3
247 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.49323 (7)0.66669 (14)0.35550 (5)0.0364 (2)
N20.64444 (8)0.71967 (13)0.46114 (6)0.0390 (2)
N30.60830 (8)0.78499 (13)0.56626 (5)0.0387 (2)
N40.63253 (10)0.82763 (16)0.63905 (6)0.0503 (3)
N50.54477 (10)0.84057 (18)0.64892 (6)0.0553 (3)
N60.46241 (9)0.80796 (15)0.58676 (5)0.0461 (3)
O10.67511 (8)0.63011 (14)0.14173 (5)0.0557 (3)
C10.54006 (9)0.70521 (14)0.42843 (6)0.0342 (2)
C20.46308 (9)0.72839 (14)0.45931 (6)0.0322 (2)
C30.36448 (9)0.70460 (14)0.40206 (6)0.0331 (2)
C40.38831 (9)0.66682 (16)0.34039 (6)0.0372 (2)
H40.33830.64370.29330.045*
C50.67850 (10)0.75945 (15)0.53047 (7)0.0400 (3)
C60.50261 (9)0.77276 (14)0.53513 (6)0.0350 (2)
C70.79065 (11)0.7757 (2)0.57366 (8)0.0538 (3)
H7A0.83070.76510.54080.081*
H7B0.81090.67350.61020.081*
H7C0.80440.89910.59860.081*
C80.25890 (9)0.71760 (15)0.40362 (6)0.0348 (2)
C90.17475 (10)0.73306 (18)0.33836 (7)0.0437 (3)
H90.18670.73610.29310.052*
C100.07452 (11)0.7441 (2)0.33822 (8)0.0531 (3)
H100.01830.75400.29310.064*
C110.05569 (11)0.7407 (2)0.40303 (9)0.0572 (4)
H11−0.01340.74930.40300.069*
C120.13717 (12)0.7249 (2)0.46801 (9)0.0559 (4)
H120.12420.72170.51290.067*
C130.23768 (11)0.71372 (18)0.46865 (7)0.0444 (3)
H130.29320.70320.51410.053*
C140.54240 (9)0.65119 (16)0.30183 (6)0.0352 (2)
C150.50818 (9)0.76648 (17)0.24049 (6)0.0409 (3)
H150.45330.85420.23480.049*
C160.55355 (10)0.75407 (18)0.18782 (7)0.0437 (3)
H160.52940.83200.14540.052*
C170.63448 (9)0.62818 (17)0.19641 (6)0.0397 (3)
C180.66942 (9)0.51457 (18)0.25825 (7)0.0430 (3)
H180.72540.42910.26460.052*
C190.62275 (9)0.52564 (17)0.31077 (6)0.0413 (3)
H190.64610.44670.35300.050*
C200.75810 (14)0.5043 (3)0.14708 (10)0.0782 (6)
H20A0.81680.53240.19180.117*
H20B0.77950.52070.10430.117*
H20C0.73540.37280.14880.117*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0378 (5)0.0443 (5)0.0276 (5)0.0018 (4)0.0121 (4)−0.0010 (4)
N20.0382 (5)0.0396 (5)0.0362 (5)0.0018 (4)0.0092 (4)0.0011 (4)
N30.0492 (6)0.0345 (4)0.0271 (5)−0.0023 (4)0.0064 (4)0.0001 (3)
N40.0663 (8)0.0509 (6)0.0272 (5)−0.0076 (5)0.0080 (5)−0.0035 (4)
N50.0717 (8)0.0613 (7)0.0300 (6)−0.0110 (6)0.0139 (5)−0.0068 (5)
N60.0620 (7)0.0495 (6)0.0284 (5)−0.0074 (5)0.0175 (5)−0.0042 (4)
O10.0641 (6)0.0690 (6)0.0459 (5)0.0180 (5)0.0340 (5)0.0111 (4)
C10.0401 (6)0.0329 (5)0.0285 (5)0.0015 (4)0.0105 (4)0.0016 (4)
C20.0406 (6)0.0288 (4)0.0272 (5)0.0002 (4)0.0118 (4)0.0018 (4)
C30.0388 (6)0.0327 (5)0.0278 (5)0.0006 (4)0.0115 (4)0.0016 (4)
C40.0365 (6)0.0436 (6)0.0298 (5)0.0000 (4)0.0095 (5)−0.0017 (4)
C50.0437 (7)0.0334 (5)0.0373 (6)0.0010 (4)0.0069 (5)0.0014 (4)
C60.0458 (6)0.0289 (5)0.0293 (5)−0.0020 (4)0.0115 (5)0.0017 (4)
C70.0451 (7)0.0510 (7)0.0520 (8)−0.0023 (5)−0.0001 (6)−0.0040 (6)
C80.0407 (6)0.0320 (5)0.0326 (6)−0.0005 (4)0.0137 (5)−0.0007 (4)
C90.0426 (7)0.0532 (7)0.0346 (6)0.0003 (5)0.0124 (5)−0.0012 (5)
C100.0404 (7)0.0647 (8)0.0496 (8)0.0015 (6)0.0096 (6)−0.0037 (6)
C110.0430 (8)0.0684 (9)0.0646 (10)−0.0028 (6)0.0244 (7)−0.0089 (7)
C120.0543 (8)0.0711 (9)0.0512 (8)−0.0043 (7)0.0297 (7)−0.0068 (6)
C130.0464 (7)0.0536 (7)0.0349 (6)−0.0008 (5)0.0161 (5)−0.0016 (5)
C140.0369 (6)0.0420 (5)0.0277 (5)−0.0006 (4)0.0124 (4)−0.0023 (4)
C150.0381 (6)0.0512 (6)0.0327 (6)0.0103 (5)0.0113 (5)0.0035 (5)
C160.0448 (7)0.0550 (7)0.0312 (6)0.0087 (5)0.0129 (5)0.0090 (5)
C170.0416 (6)0.0474 (6)0.0337 (6)0.0020 (5)0.0174 (5)0.0000 (4)
C180.0451 (7)0.0448 (6)0.0426 (7)0.0110 (5)0.0195 (5)0.0049 (5)
C190.0472 (7)0.0433 (6)0.0348 (6)0.0075 (5)0.0158 (5)0.0069 (4)
C200.0943 (13)0.0825 (11)0.0864 (12)0.0367 (10)0.0674 (11)0.0245 (9)

Geometric parameters (Å, °)

N1—C11.3661 (14)C8—C91.3942 (17)
N1—C41.3680 (15)C9—C101.3783 (18)
N1—C141.4294 (14)C9—H90.9500
N2—C51.2951 (16)C10—C111.371 (2)
N2—C11.3567 (15)C10—H100.9500
N3—C61.3691 (16)C11—C121.372 (2)
N3—N41.3699 (14)C11—H110.9500
N3—C51.3819 (17)C12—C131.379 (2)
N4—N51.2879 (17)C12—H120.9500
N5—N61.3591 (16)C13—H130.9500
N6—C61.3254 (15)C14—C191.3768 (16)
O1—C171.3606 (13)C14—C151.3828 (16)
O1—C201.4183 (17)C15—C161.3730 (17)
C1—C21.3942 (16)C15—H150.9500
C2—C61.4178 (15)C16—C171.3854 (17)
C2—C31.4351 (15)C16—H160.9500
C3—C41.3730 (15)C17—C181.3835 (16)
C3—C81.4640 (16)C18—C191.3825 (16)
C4—H40.9500C18—H180.9500
C5—C71.4824 (18)C19—H190.9500
C7—H7A0.9800C20—H20A0.9800
C7—H7B0.9800C20—H20B0.9800
C7—H7C0.9800C20—H20C0.9800
C8—C131.3920 (17)
C1—N1—C4107.82 (9)C10—C9—H9119.3
C1—N1—C14126.90 (10)C8—C9—H9119.3
C4—N1—C14124.89 (9)C11—C10—C9120.20 (14)
C5—N2—C1116.55 (11)C11—C10—H10119.9
C6—N3—N4108.19 (10)C9—C10—H10119.9
C6—N3—C5125.97 (10)C10—C11—C12119.60 (13)
N4—N3—C5125.83 (11)C10—C11—H11120.2
N5—N4—N3105.27 (10)C12—C11—H11120.2
N4—N5—N6112.98 (11)C11—C12—C13120.58 (13)
C6—N6—N5105.53 (11)C11—C12—H12119.7
C17—O1—C20118.22 (10)C13—C12—H12119.7
N2—C1—N1122.92 (10)C12—C13—C8120.93 (13)
N2—C1—C2128.74 (10)C12—C13—H13119.5
N1—C1—C2108.33 (10)C8—C13—H13119.5
C1—C2—C6113.45 (10)C19—C14—C15120.24 (10)
C1—C2—C3107.80 (9)C19—C14—N1121.15 (10)
C6—C2—C3138.71 (11)C15—C14—N1118.61 (10)
C4—C3—C2104.68 (10)C16—C15—C14119.92 (11)
C4—C3—C8124.54 (10)C16—C15—H15120.0
C2—C3—C8130.77 (10)C14—C15—H15120.0
N1—C4—C3111.35 (10)C15—C16—C17120.19 (11)
N1—C4—H4124.3C15—C16—H16119.9
C3—C4—H4124.3C17—C16—H16119.9
N2—C5—N3119.19 (11)O1—C17—C18124.85 (11)
N2—C5—C7122.47 (12)O1—C17—C16115.35 (10)
N3—C5—C7118.33 (11)C18—C17—C16119.78 (11)
N6—C6—N3108.03 (10)C19—C18—C17119.91 (11)
N6—C6—C2135.87 (11)C19—C18—H18120.0
N3—C6—C2116.10 (10)C17—C18—H18120.0
C5—C7—H7A109.5C14—C19—C18119.94 (11)
C5—C7—H7B109.5C14—C19—H19120.0
H7A—C7—H7B109.5C18—C19—H19120.0
C5—C7—H7C109.5O1—C20—H20A109.5
H7A—C7—H7C109.5O1—C20—H20B109.5
H7B—C7—H7C109.5H20A—C20—H20B109.5
C13—C8—C9117.35 (11)O1—C20—H20C109.5
C13—C8—C3122.51 (11)H20A—C20—H20C109.5
C9—C8—C3120.13 (10)H20B—C20—H20C109.5
C10—C9—C8121.33 (12)
C6—N3—N4—N5−0.45 (12)C5—N3—C6—C20.47 (15)
C5—N3—N4—N5179.34 (10)C1—C2—C6—N6179.44 (12)
N3—N4—N5—N60.33 (14)C3—C2—C6—N61.9 (2)
N4—N5—N6—C6−0.08 (14)C1—C2—C6—N3−0.34 (13)
C5—N2—C1—N1179.05 (10)C3—C2—C6—N3−177.88 (11)
C5—N2—C1—C20.35 (17)C4—C3—C8—C13165.29 (11)
C4—N1—C1—N2−178.52 (10)C2—C3—C8—C13−15.64 (17)
C14—N1—C1—N2−5.42 (17)C4—C3—C8—C9−14.18 (16)
C4—N1—C1—C20.41 (12)C2—C3—C8—C9164.89 (11)
C14—N1—C1—C2173.51 (10)C13—C8—C9—C100.00 (17)
N2—C1—C2—C6−0.04 (16)C3—C8—C9—C10179.50 (11)
N1—C1—C2—C6−178.89 (9)C8—C9—C10—C110.3 (2)
N2—C1—C2—C3178.25 (10)C9—C10—C11—C12−0.5 (2)
N1—C1—C2—C3−0.60 (11)C10—C11—C12—C130.4 (2)
C1—C2—C3—C40.54 (11)C11—C12—C13—C8−0.2 (2)
C6—C2—C3—C4178.17 (12)C9—C8—C13—C12−0.05 (17)
C1—C2—C3—C8−178.67 (10)C3—C8—C13—C12−179.54 (11)
C6—C2—C3—C8−1.0 (2)C1—N1—C14—C1955.88 (16)
C1—N1—C4—C3−0.06 (13)C4—N1—C14—C19−132.14 (12)
C14—N1—C4—C3−173.33 (10)C1—N1—C14—C15−123.61 (12)
C2—C3—C4—N1−0.30 (12)C4—N1—C14—C1548.36 (16)
C8—C3—C4—N1178.97 (9)C19—C14—C15—C160.85 (18)
C1—N2—C5—N3−0.24 (15)N1—C14—C15—C16−179.66 (11)
C1—N2—C5—C7178.70 (10)C14—C15—C16—C17−0.88 (19)
C6—N3—C5—N2−0.17 (16)C20—O1—C17—C181.4 (2)
N4—N3—C5—N2−179.92 (10)C20—O1—C17—C16−179.88 (14)
C6—N3—C5—C7−179.15 (10)C15—C16—C17—O1−178.74 (12)
N4—N3—C5—C71.10 (16)C15—C16—C17—C180.1 (2)
N5—N6—C6—N3−0.22 (12)O1—C17—C18—C19179.42 (12)
N5—N6—C6—C2179.99 (12)C16—C17—C18—C190.70 (19)
N4—N3—C6—N60.42 (12)C15—C14—C19—C18−0.04 (18)
C5—N3—C6—N6−179.37 (10)N1—C14—C19—C18−179.52 (11)
N4—N3—C6—C2−179.74 (9)C17—C18—C19—C14−0.73 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···N60.952.383.2159 (18)146
C12—H12···O1i0.952.573.3902 (17)144
C7—H7B···Cg4ii0.962.903.620 (2)132
C7—H7C···Cg4iii0.962.693.554 (2)150

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2072).

References

  • Ali, A. S. & Swealan, S. A. (1992). Egypt J. Pharm. Sci.33, 473–477.
  • Baldaniya, B. B. & Jotani, M. M. (2008). Anal. Sci. X-Ray Struct. Online24, x217–x218.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bourgurgnon, J., Gougeon, E., Queguiner, G. & Pastor, B. (1975). Bull. Soc. Chim. Fr.3-4, 815–819.
  • Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Dave, C. G. & Shah, R. D. (2000). J. Heterocycl. Chem.7, 757–761.
  • Dave, C. G. & Shah, R. D. (2002). Molecules, 7, 534–543.
  • Hand, E. S. & Backer, D. C. (1984). Can. J. Chem.62, 2570–2577.
  • Hou, Z.-H., Zhou, N.-B., He, B.-H. & Li, X.-F. (2009). Acta Cryst. E65, o375. [PMC free article] [PubMed]
  • Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.
  • Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739. [PMC free article] [PubMed]
  • Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. pp. 3429–3436.
  • Omer, A., Mohson, M., Shams, A. & Labouta, I. A. (1991). J. Pharm. Sci.5, 213–218.
  • Peinador, C., Ojea, V. & Quintela, J. M. (1992). J. Heterocycl. Chem.29, 1698–1702.
  • Robba, M., Lecomte, J. M. & Cugnon de, M. (1975). J. Heterocycl. Chem.12, 525–527.
  • Schneller, S. W. & Clough, F. W. (1992). J. Heterocycl. Chem.11, 975–977.
  • Schram, K. L., Manning, S. J. & Townsend, L. B. (1975). J. Heterocycl. Chem.12, 1021–1023.
  • Shah, R. D. (2009). Unpublished results.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shishoo, C. J. & Jain, S. K. (1992). J. Heterocycl Chem.29, 883–893.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wilkinson, J. A. (1992). Chem. Rev.92, 505–519.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography