PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o167.
Published online 2009 December 16. doi:  10.1107/S1600536809053173
PMCID: PMC2980221

{6-[2,5-Bis(chloro­meth­yl)-3,4-dihydroxy­tetra­hydro­furan-2-yl­oxy]-3-chloro-4,5-dihydr­oxy-3,4,5,6-tetra­hydro-2H-pyran-2-yl}methyl acetate dihydrate

Abstract

The title compound, C14H21Cl3O9·2H2O, is a disaccharide constructed from a galactose and a fructose. In the mol­ecular structure, the tetra­hydro­furan five-membered ring and tetra­hydro­pyran six-membered ring assume envelope and chair conformations, respectively. An extensive O—H(...)O hydrogen-bonding network occurs in the crystal structure.

Related literature

For the biological importance of sucrose and its derivatives, see: Liu et al. (2004 [triangle]); Stutz (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o167-scheme1.jpg

Experimental

Crystal data

  • C14H21Cl3O9·2H2O
  • M r = 475.69
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o167-efi1.jpg
  • a = 7.5824 (8) Å
  • b = 14.2703 (14) Å
  • c = 19.507 (2) Å
  • V = 2110.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 298 K
  • 0.42 × 0.22 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.822, T max = 0.931
  • 8741 measured reflections
  • 3705 independent reflections
  • 2973 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.081
  • S = 1.03
  • 3705 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1569 Friedel pairs
  • Flack parameter: 0.10 (6)

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053173/xu2685sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053173/xu2685Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20572103).

supplementary crystallographic information

Comment

Due to its widespread existence in all photosynthetic plants and its biological importance, sucrose and its derivatives are of interest as potentially useful substrates in the chemical and biological fields (Liu et al., 2004; Stutz, 1999). To develop new applications for sucrose and its derivatives, structural modifications of sucrose have been extensively investigated. As a contribution to the sucrose chemistry, we report here the crystal structure of the title compound.

The molecular structure of title compound is shown in Fig.1. Intermolecular hydrogen bonds link molecules in crystal structure into a three-dimensional structure (Table 1).

Experimental

The reaction was carried out under nitrogen atmosphere. Sucrose (0.50 mol) and thionyl chloride (2.00 mol) were added to a stirred solution of pyridine (500 ml) and stirred at 418 K for 12 h. The solvent was evaporated under vacuum. 50 ml of water was added to the reside and pH was adjusted to 7 with the saturated NaOH-solution. The mixture was washed with toluene (2*30 ml) and concentrated under vacuum to obtain the title compound as a white solid. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a ethyl acetate solution over a period of two weeks.

Refinement

H atoms were positioned geometrically with O—H = 0.82 (hydroxy), 0.85 (water) and C—H = 0.96 (methyl), 0.97 (methylene) and 0.98 Å (methine), and constrained to ride on their parent atoms with Uiso(H) = xUeq (C), where x = 1.5 for methyl and hydroxyl H atoms and x = 1.2 for the others.

Figures

Fig. 1.
The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids.

Crystal data

C14H21Cl3O9·2H2OF(000) = 992
Mr = 475.69Dx = 1.497 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3263 reflections
a = 7.5824 (8) Åθ = 2.5–25.7°
b = 14.2703 (14) ŵ = 0.49 mm1
c = 19.507 (2) ÅT = 298 K
V = 2110.7 (4) Å3Block, colorless
Z = 40.42 × 0.22 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer3705 independent reflections
Radiation source: fine-focus sealed tube2973 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→9
Tmin = 0.822, Tmax = 0.931k = −16→9
8741 measured reflectionsl = −21→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.081w = 1/[σ2(Fo2) + (0.0283P)2 + 0.4654P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3705 reflectionsΔρmax = 0.23 e Å3
253 parametersΔρmin = −0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1569 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.10 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.02954 (11)0.51019 (6)0.41375 (4)0.0512 (2)
Cl20.69677 (15)0.68921 (6)0.81804 (4)0.0696 (3)
Cl30.80356 (16)0.31574 (7)0.75058 (6)0.0844 (4)
O10.8271 (2)0.49683 (12)0.55568 (8)0.0347 (4)
O20.7716 (2)0.62834 (12)0.62281 (8)0.0310 (4)
O31.1081 (2)0.69493 (13)0.60293 (9)0.0364 (5)
H31.03270.73490.61010.055*
O41.1037 (3)0.70723 (12)0.45730 (9)0.0397 (5)
H41.06390.74470.42950.060*
O50.5109 (3)0.42018 (15)0.50144 (11)0.0549 (6)
O60.7424 (2)0.52803 (11)0.71868 (9)0.0329 (4)
O70.4430 (3)0.67403 (16)0.62983 (11)0.0534 (6)
H70.33500.67510.62780.080*
O80.2886 (3)0.47783 (15)0.67508 (11)0.0536 (6)
H80.25900.48450.71520.080*
O90.3805 (4)0.35928 (18)0.41001 (13)0.0728 (8)
O100.9171 (3)0.85590 (14)0.60537 (13)0.0619 (7)
H10C0.81670.84170.58900.074*
H10D0.90440.90150.63290.074*
O110.0863 (3)0.51355 (17)0.79506 (11)0.0628 (6)
H11E−0.01250.51980.77500.075*
H11F0.09050.55190.82830.075*
C10.9025 (4)0.56650 (18)0.59817 (13)0.0304 (6)
H10.96020.53610.63730.036*
C21.0379 (4)0.62448 (18)0.55956 (13)0.0299 (6)
H21.13500.58250.54710.036*
C30.9628 (4)0.66439 (18)0.49342 (13)0.0309 (6)
H3A0.87610.71270.50510.037*
C40.8711 (4)0.58870 (19)0.45181 (13)0.0339 (7)
H4A0.80510.61910.41480.041*
C50.7409 (4)0.53505 (18)0.49644 (14)0.0346 (6)
H50.64920.57860.51190.042*
C60.6536 (4)0.4552 (2)0.45939 (16)0.0471 (8)
H6A0.60810.47650.41560.056*
H6B0.73850.40570.45090.056*
C70.6951 (4)0.61492 (17)0.68933 (13)0.0295 (6)
C80.4961 (4)0.61162 (19)0.68120 (14)0.0352 (7)
H8A0.43980.62880.72470.042*
C90.4633 (4)0.5094 (2)0.66658 (14)0.0369 (7)
H90.49910.49670.61920.044*
C100.5962 (4)0.46240 (19)0.71439 (15)0.0370 (7)
H100.54330.45460.75990.044*
C110.6622 (5)0.3694 (2)0.68905 (17)0.0497 (8)
H11A0.72610.37820.64650.060*
H11B0.56270.32850.67990.060*
C120.7704 (5)0.6936 (2)0.73225 (13)0.0437 (8)
H12A0.73640.75320.71230.052*
H12B0.89810.68990.73150.052*
C130.3859 (5)0.3717 (2)0.47033 (19)0.0516 (9)
C140.2524 (5)0.3352 (3)0.52023 (19)0.0766 (12)
H14A0.30030.28210.54410.115*
H14B0.14790.31660.49600.115*
H14C0.22330.38340.55260.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0524 (5)0.0546 (5)0.0466 (4)−0.0006 (4)0.0119 (4)−0.0130 (4)
Cl20.1087 (9)0.0690 (5)0.0311 (4)0.0230 (6)−0.0028 (5)−0.0049 (4)
Cl30.0934 (9)0.0619 (6)0.0980 (8)0.0202 (6)−0.0228 (7)0.0209 (6)
O10.0398 (11)0.0339 (9)0.0304 (10)−0.0023 (9)−0.0014 (9)0.0024 (8)
O20.0281 (10)0.0377 (10)0.0273 (10)0.0053 (9)0.0027 (8)0.0068 (8)
O30.0258 (10)0.0402 (11)0.0431 (11)0.0001 (9)−0.0042 (9)−0.0064 (9)
O40.0352 (11)0.0427 (11)0.0413 (11)−0.0018 (10)0.0055 (10)0.0128 (10)
O50.0577 (15)0.0651 (14)0.0419 (12)−0.0286 (13)−0.0010 (12)−0.0018 (11)
O60.0326 (11)0.0340 (10)0.0321 (10)−0.0010 (9)−0.0045 (9)0.0071 (8)
O70.0249 (12)0.0672 (15)0.0679 (15)0.0043 (11)−0.0037 (10)0.0382 (12)
O80.0330 (12)0.0719 (15)0.0560 (13)−0.0154 (12)−0.0016 (10)0.0056 (12)
O90.0735 (19)0.0873 (18)0.0577 (16)−0.0277 (15)−0.0058 (15)−0.0145 (15)
O100.0496 (15)0.0453 (13)0.0908 (18)0.0043 (11)−0.0205 (14)−0.0132 (12)
O110.0531 (14)0.0871 (17)0.0482 (13)0.0025 (14)−0.0063 (11)−0.0002 (13)
C10.0294 (15)0.0322 (14)0.0295 (15)0.0043 (13)−0.0043 (12)0.0033 (12)
C20.0246 (14)0.0304 (14)0.0347 (14)0.0014 (13)−0.0021 (12)−0.0005 (12)
C30.0260 (15)0.0334 (14)0.0333 (14)−0.0017 (13)0.0038 (13)0.0034 (12)
C40.0344 (17)0.0385 (15)0.0290 (15)0.0000 (13)−0.0031 (13)0.0020 (12)
C50.0333 (16)0.0392 (15)0.0314 (14)−0.0043 (13)−0.0031 (13)−0.0014 (12)
C60.047 (2)0.0521 (18)0.0420 (17)−0.0170 (16)0.0015 (16)−0.0037 (15)
C70.0314 (16)0.0309 (14)0.0263 (14)0.0012 (13)−0.0005 (12)0.0079 (11)
C80.0299 (17)0.0417 (16)0.0341 (15)0.0059 (14)0.0030 (13)0.0066 (13)
C90.0303 (15)0.0476 (17)0.0329 (15)−0.0062 (15)0.0003 (12)0.0065 (13)
C100.0321 (16)0.0425 (17)0.0362 (16)−0.0065 (14)0.0006 (14)0.0095 (14)
C110.052 (2)0.0373 (17)0.060 (2)−0.0049 (16)−0.0078 (17)0.0065 (16)
C120.057 (2)0.0391 (16)0.0346 (16)−0.0028 (16)−0.0043 (15)0.0023 (13)
C130.053 (2)0.0424 (18)0.059 (2)−0.0080 (17)−0.0037 (19)0.0036 (18)
C140.072 (3)0.084 (3)0.074 (3)−0.040 (2)−0.008 (2)0.019 (2)

Geometric parameters (Å, °)

Cl1—C41.802 (3)C2—C31.521 (3)
Cl2—C121.765 (3)C2—H20.9800
Cl3—C111.782 (3)C3—C41.519 (4)
O1—C11.415 (3)C3—H3A0.9800
O1—C51.436 (3)C4—C51.523 (4)
O2—C11.412 (3)C4—H4A0.9800
O2—C71.434 (3)C5—C61.503 (4)
O3—C21.418 (3)C5—H50.9800
O3—H30.8200C6—H6A0.9700
O4—C31.418 (3)C6—H6B0.9700
O4—H40.8200C7—C121.512 (4)
O5—C131.321 (4)C7—C81.518 (4)
O5—C61.447 (4)C8—C91.507 (4)
O6—C71.412 (3)C8—H8A0.9800
O6—C101.454 (3)C9—C101.528 (4)
O7—C81.400 (3)C9—H90.9800
O7—H70.8200C10—C111.502 (4)
O8—C91.409 (3)C10—H100.9800
O8—H80.8200C11—H11A0.9700
O9—C131.191 (4)C11—H11B0.9700
O10—H10C0.8500C12—H12A0.9700
O10—H10D0.8500C12—H12B0.9700
O11—H11E0.8500C13—C141.498 (5)
O11—H11F0.8500C14—H14A0.9600
C1—C21.518 (4)C14—H14B0.9600
C1—H10.9800C14—H14C0.9600
C1—O1—C5112.87 (19)O6—C7—O2112.4 (2)
C1—O2—C7120.57 (18)O6—C7—C12109.4 (2)
C2—O3—H3109.5O2—C7—C12104.4 (2)
C3—O4—H4109.5O6—C7—C8105.5 (2)
C13—O5—C6117.2 (2)O2—C7—C8108.2 (2)
C7—O6—C10110.44 (19)C12—C7—C8117.1 (2)
C8—O7—H7109.5O7—C8—C9115.7 (2)
C9—O8—H8109.5O7—C8—C7109.9 (2)
H10C—O10—H10D108.6C9—C8—C7102.3 (2)
H11E—O11—H11F108.5O7—C8—H8A109.5
O2—C1—O1110.8 (2)C9—C8—H8A109.5
O2—C1—C2107.7 (2)C7—C8—H8A109.5
O1—C1—C2111.4 (2)O8—C9—C8116.2 (2)
O2—C1—H1109.0O8—C9—C10114.1 (2)
O1—C1—H1109.0C8—C9—C10101.6 (2)
C2—C1—H1109.0O8—C9—H9108.2
O3—C2—C1110.1 (2)C8—C9—H9108.2
O3—C2—C3112.4 (2)C10—C9—H9108.2
C1—C2—C3111.8 (2)O6—C10—C11109.5 (2)
O3—C2—H2107.4O6—C10—C9104.8 (2)
C1—C2—H2107.4C11—C10—C9114.0 (2)
C3—C2—H2107.4O6—C10—H10109.5
O4—C3—C4112.7 (2)C11—C10—H10109.5
O4—C3—C2107.5 (2)C9—C10—H10109.5
C4—C3—C2111.0 (2)C10—C11—Cl3111.0 (2)
O4—C3—H3A108.5C10—C11—H11A109.4
C4—C3—H3A108.5Cl3—C11—H11A109.4
C2—C3—H3A108.5C10—C11—H11B109.4
C3—C4—C5110.4 (2)Cl3—C11—H11B109.4
C3—C4—Cl1110.9 (2)H11A—C11—H11B108.0
C5—C4—Cl1110.81 (19)C7—C12—Cl2112.3 (2)
C3—C4—H4A108.2C7—C12—H12A109.1
C5—C4—H4A108.2Cl2—C12—H12A109.1
Cl1—C4—H4A108.2C7—C12—H12B109.1
O1—C5—C6107.4 (2)Cl2—C12—H12B109.1
O1—C5—C4110.8 (2)H12A—C12—H12B107.9
C6—C5—C4113.1 (2)O9—C13—O5123.8 (3)
O1—C5—H5108.5O9—C13—C14124.6 (3)
C6—C5—H5108.5O5—C13—C14111.6 (3)
C4—C5—H5108.5C13—C14—H14A109.5
O5—C6—C5108.6 (2)C13—C14—H14B109.5
O5—C6—H6A110.0H14A—C14—H14B109.5
C5—C6—H6A110.0C13—C14—H14C109.5
O5—C6—H6B110.0H14A—C14—H14C109.5
C5—C6—H6B110.0H14B—C14—H14C109.5
H6A—C6—H6B108.4
C7—O2—C1—O196.6 (2)C10—O6—C7—C813.7 (3)
C7—O2—C1—C2−141.3 (2)C1—O2—C7—O6−10.3 (3)
C5—O1—C1—O260.7 (3)C1—O2—C7—C12108.2 (3)
C5—O1—C1—C2−59.1 (3)C1—O2—C7—C8−126.4 (2)
O2—C1—C2—O357.0 (3)O6—C7—C8—O7−156.5 (2)
O1—C1—C2—O3178.7 (2)O2—C7—C8—O7−36.0 (3)
O2—C1—C2—C3−68.7 (3)C12—C7—C8—O781.6 (3)
O1—C1—C2—C352.9 (3)O6—C7—C8—C9−33.1 (3)
O3—C2—C3—O462.5 (3)O2—C7—C8—C987.4 (2)
C1—C2—C3—O4−173.0 (2)C12—C7—C8—C9−155.0 (2)
O3—C2—C3—C4−173.8 (2)O7—C8—C9—O8−77.6 (3)
C1—C2—C3—C4−49.3 (3)C7—C8—C9—O8163.0 (2)
O4—C3—C4—C5171.3 (2)O7—C8—C9—C10158.0 (2)
C2—C3—C4—C550.6 (3)C7—C8—C9—C1038.6 (3)
O4—C3—C4—Cl148.1 (3)C7—O6—C10—C11133.7 (2)
C2—C3—C4—Cl1−72.6 (2)C7—O6—C10—C911.0 (3)
C1—O1—C5—C6−175.1 (2)O8—C9—C10—O6−156.9 (2)
C1—O1—C5—C460.9 (3)C8—C9—C10—O6−31.1 (3)
C3—C4—C5—O1−55.8 (3)O8—C9—C10—C1183.4 (3)
Cl1—C4—C5—O167.5 (2)C8—C9—C10—C11−150.8 (2)
C3—C4—C5—C6−176.5 (2)O6—C10—C11—Cl367.2 (3)
Cl1—C4—C5—C6−53.2 (3)C9—C10—C11—Cl3−175.7 (2)
C13—O5—C6—C5159.2 (3)O6—C7—C12—Cl2−58.1 (3)
O1—C5—C6—O567.8 (3)O2—C7—C12—Cl2−178.66 (18)
C4—C5—C6—O5−169.6 (2)C8—C7—C12—Cl261.8 (3)
C10—O6—C7—O2−104.0 (2)C6—O5—C13—O9−3.6 (5)
C10—O6—C7—C12140.5 (2)C6—O5—C13—C14176.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O100.821.942.716 (3)158
O4—H4···O7i0.821.882.692 (3)172
O7—H7···O3ii0.821.812.610 (3)165
O8—H8···O110.822.082.844 (3)156
O10—H10C···O4iii0.851.982.820 (3)171
O10—H10D···O11iv0.852.132.972 (3)171
O11—H11E···O6ii0.852.163.011 (3)176
O11—H11F···O9v0.852.052.896 (3)176

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1, y, z; (iii) x−1/2, −y+3/2, −z+1; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2685).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Liu, F.-W., Liu, H.-M., Yu, K. & Zhang, J.-Y. (2004). Carbohydr. Res.339, 2651–2656. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Stutz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond Weinheim: Wiley–VCH.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography