PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o133.
Published online 2009 December 12. doi:  10.1107/S1600536809052672
PMCID: PMC2980220

Isopropyl­aminium 2-carb­oxy-4,5-di­chloro­benzoate

Abstract

In the structure of the 1:1 proton-transfer compound of isopropyl­amine with 4,5-dichloro­phthalic acid, C3H10N+·C8H3Cl2O4 , the three cation H-atom donors associate with three separate carboxyl O-atom anion acceptors, giving conjoint cyclic R 4 4(12), R 4 4(16) hydrogen-bonding cation–anion inter­actions in a one-dimensional ribbon structure. In the anions, the carboxyl groups lie slightly out of the plane of the benzene ring [maximum deviations = 0.439 (1) for a carboxylic acid O atom and 0.433 (1) Å for a carboxyl­ate O atom]. However, the syn-related proton of the carboxylic acid group forms the common short intra­molecular O—H(...)Ocarbox­yl hydrogen bond.

Related literature

For the structures of other hydrogen 4,5-dichloro­phthalate salts, see: Mattes & Dorau (1986 [triangle]); Mallinson et al. (2003 [triangle]); Bozkurt et al. (2006 [triangle]); Odabaşoğlu & Büyükgüngör (2007 [triangle]); Smith et al. (2007 [triangle], 2008a [triangle],b [triangle], 2009a [triangle],b [triangle],c [triangle]); Smith & Wermuth (2010 [triangle]). For graph-set analysis see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o133-scheme1.jpg

Experimental

Crystal data

  • C3H10N+·C8H3Cl2O4
  • M r = 294.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o133-efi1.jpg
  • a = 5.8362 (7) Å
  • b = 21.040 (2) Å
  • c = 10.3641 (13) Å
  • β = 95.064 (12)°
  • V = 1267.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 200 K
  • 0.40 × 0.20 × 0.18 mm

Data collection

  • Oxford Diffraction Gemini-S CCD detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.942, T max = 0.982
  • 8508 measured reflections
  • 2484 independent reflections
  • 2103 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.070
  • S = 1.11
  • 2484 reflections
  • 179 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052672/sj2696sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052672/sj2696Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with a number of nitrogen Lewis bases commonly have low-dimensional hydrogen-bonded structures (Smith et al., 2007, 2008a,b, 2009a,b,c; Smith & Wermuth, 2010). In the majority of these structures, the DCPA anions are essentially planar with short intramolecular carboxylic acid O–H···Ocarboxyl hydrogen bonds. These features were therefore expected and found in the 1:1 proton-transfer compound of DCPA with isopropylamine, the title compound C3H10N+ C8H3Cl2O4- (I), reported here.

In (I), the aminium group of the cation forms N+–H···Ocarboxyl hydrogen bonds with O acceptors of three separate DCPA anions (Figs. 1, 2). These associations (Table 1) give one-dimensional ribbon structures which extend across the c cell direction in the unit cell (Fig. 2) and feature conjoint cyclic R44(12) and R44(16) cation–anion hydrogen-bonding interactions (Etter et al., 1990). Within the DCPA anion [torsion angles C2–C1–C11–O11, -161.01 (13)° and C1–C2–C21–O22, -156.69 (13)°] indicate greater distortion from planarity than has been found in the common `planar' DCPA anion examples. The short intramolecular O–H···Ocarboxyl hydrogen bond is also slightly longer [2.4507 (16) Å] (cf. 1.4054 (19) Å (Smith et al., 2009c). Associated with this bond is a significant distortion of the exo-C1 and C2 bond angles [C1–C2–C21, 128.14 (11) ° and C2–C1–C11, 128.32 (11) °]. This and a lengthening of the C1–C11 and C2–C21 bonds [1.5189 (18) and 1.5297 (18) Å], as well as short intramolecular aromatic ring C–H···Ocarboxyl interactions [2.6853 (18), 2.6996 (17) Å], are features of the `planar' hydrogen DCPA anions which have been noted previously (Smith et al., 2009c).

Experimental

The title compound (I) was synthesized by heating together 1 mmol quantities of isopropylamine and 4,5-dichlorophthalic acid in 50 ml of methanol for 10 min under reflux. After concentration to ca. 30 ml, total room-temperature evaporation of the hot-filtered solution gave a white non-crystalline solid which was redissolved in water, finally providing colourless flat prisms (m.p. 533 K).

Refinement

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–Haromatic = 0.93 Å; C–Haliphatic = 0.96–0.98 Å] and treated as riding models with Uiso(H) = 1.2Ueq (C).

Figures

Fig. 1.
Molecular configuration and atom numbering scheme for the isopropylaminium cation and the hydrogen 4,5-dichlorophthalate anion in (I). Non-H atoms are shown as 40% probability displacement ellipsoids. The inter-species hydrogen bond is shown as a dashed ...
Fig. 2.
The one-dimensional hydrogen-bonded ribbon structure of (I) extending across the c axial direction in the unit cell. Hydrogen bonds are shown as dashed lines. For symmetry codes see Table 1.

Crystal data

C3H10N+·C8H3Cl2O4F(000) = 608
Mr = 294.12Dx = 1.541 Mg m3
Monoclinic, P21/nMelting point: 533 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.8362 (7) ÅCell parameters from 3787 reflections
b = 21.040 (2) Åθ = 3.5–28.9°
c = 10.3641 (13) ŵ = 0.52 mm1
β = 95.064 (12)°T = 200 K
V = 1267.7 (3) Å3Prism, colourless
Z = 40.40 × 0.20 × 0.18 mm

Data collection

Oxford Diffraction Gemini-S CCD detector diffractometer2484 independent reflections
Radiation source: Enhance (Mo) X-ray source2103 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.942, Tmax = 0.982k = −25→25
8508 measured reflectionsl = −11→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0418P)2] where P = (Fo2 + 2Fc2)/3
2484 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl4−0.02700 (6)0.21328 (2)0.79371 (4)0.0321 (1)
Cl5−0.07644 (7)0.22223 (2)0.48482 (4)0.0381 (1)
O110.51763 (18)0.06697 (6)0.34762 (10)0.0380 (4)
O120.79781 (18)0.04757 (5)0.49757 (11)0.0363 (4)
O210.85388 (16)0.04986 (5)0.73467 (10)0.0284 (3)
O220.61961 (18)0.05281 (5)0.89173 (10)0.0319 (3)
C10.4642 (2)0.10656 (6)0.55707 (13)0.0208 (4)
C20.4887 (2)0.10301 (6)0.69407 (13)0.0197 (4)
C30.3362 (2)0.13730 (6)0.76294 (14)0.0214 (4)
C40.1622 (2)0.17415 (6)0.70180 (14)0.0230 (4)
C50.1406 (2)0.17807 (6)0.56719 (14)0.0247 (4)
C60.2902 (2)0.14478 (6)0.49726 (14)0.0241 (4)
C110.5991 (2)0.07119 (6)0.46084 (14)0.0250 (4)
C210.6660 (2)0.06527 (6)0.78049 (14)0.0225 (4)
N1A0.8171 (2)0.04013 (6)0.15582 (13)0.0231 (4)
C1A0.9564 (2)0.10018 (7)0.17227 (15)0.0271 (4)
C2A0.7999 (3)0.15688 (8)0.14539 (19)0.0420 (6)
C3A1.1460 (3)0.09810 (8)0.08332 (17)0.0350 (5)
H30.351500.135400.852900.0260*
H60.275100.147800.407400.0290*
H120.821 (4)0.0490 (11)0.594 (3)0.087 (8)*
H1A1.024800.102600.261900.0330*
H11A0.694 (3)0.0418 (8)0.2138 (18)0.040 (5)*
H12A0.907 (3)0.0072 (9)0.1720 (17)0.036 (5)*
H13A0.751 (3)0.0384 (8)0.072 (2)0.037 (5)*
H21A0.681700.156600.204200.0500*
H22A0.730800.154700.057900.0500*
H23A0.887900.195300.157000.0500*
H31A1.241400.061600.103600.0420*
H32A1.237200.136000.094300.0420*
H33A1.080700.09530−0.004800.0420*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl40.0289 (2)0.0304 (2)0.0377 (2)0.0045 (1)0.0069 (2)−0.0040 (2)
Cl50.0363 (2)0.0352 (2)0.0399 (3)0.0086 (2)−0.0133 (2)0.0045 (2)
O110.0356 (6)0.0582 (7)0.0205 (6)−0.0017 (5)0.0050 (5)−0.0080 (5)
O120.0341 (6)0.0470 (6)0.0286 (7)0.0119 (5)0.0069 (5)0.0007 (5)
O210.0221 (5)0.0317 (6)0.0309 (6)0.0035 (4)−0.0002 (4)0.0045 (4)
O220.0368 (6)0.0395 (6)0.0187 (6)0.0064 (4)−0.0014 (4)0.0048 (4)
C10.0216 (7)0.0217 (7)0.0189 (7)−0.0057 (5)0.0008 (5)0.0006 (5)
C20.0196 (6)0.0194 (6)0.0196 (7)−0.0048 (5)−0.0010 (5)0.0012 (5)
C30.0248 (7)0.0226 (7)0.0168 (7)−0.0038 (5)0.0011 (5)0.0007 (5)
C40.0223 (7)0.0200 (7)0.0268 (8)−0.0029 (5)0.0024 (6)−0.0014 (5)
C50.0249 (7)0.0208 (7)0.0268 (8)−0.0018 (5)−0.0069 (6)0.0028 (5)
C60.0275 (7)0.0265 (7)0.0174 (8)−0.0055 (5)−0.0033 (6)0.0021 (5)
C110.0273 (7)0.0268 (7)0.0214 (8)−0.0060 (6)0.0052 (6)0.0006 (6)
C210.0246 (7)0.0208 (7)0.0212 (8)−0.0029 (5)−0.0030 (6)−0.0004 (5)
N1A0.0237 (6)0.0269 (6)0.0183 (7)0.0018 (5)−0.0003 (5)0.0007 (5)
C1A0.0315 (8)0.0281 (7)0.0208 (8)−0.0026 (6)−0.0031 (6)−0.0018 (6)
C2A0.0512 (10)0.0287 (8)0.0474 (11)0.0071 (7)0.0111 (8)−0.0027 (7)
C3A0.0291 (8)0.0354 (8)0.0408 (10)−0.0019 (6)0.0041 (7)0.0071 (7)

Geometric parameters (Å, °)

Cl4—C41.7292 (14)C2—C31.3908 (18)
Cl5—C51.7337 (14)C3—C41.3858 (18)
O11—C111.2298 (18)C4—C51.392 (2)
O12—C111.2880 (16)C5—C61.3747 (18)
O21—C211.2747 (16)C3—H30.9300
O22—C211.2354 (18)C6—H60.9300
O12—H121.00 (3)C1A—C2A1.513 (2)
N1A—C1A1.5039 (19)C1A—C3A1.502 (2)
N1A—H11A0.977 (18)C1A—H1A0.9800
N1A—H13A0.92 (2)C2A—H21A0.9600
N1A—H12A0.876 (19)C2A—H22A0.9600
C1—C61.3968 (18)C2A—H23A0.9600
C1—C111.5189 (18)C3A—H31A0.9600
C1—C21.4164 (19)C3A—H32A0.9600
C2—C211.5297 (18)C3A—H33A0.9600
C11—O12—H12108.9 (14)O21—C21—C2118.27 (12)
H11A—N1A—H12A111.8 (15)O22—C21—C2117.64 (11)
C1A—N1A—H13A108.5 (11)C2—C3—H3119.00
C1A—N1A—H11A108.6 (10)C4—C3—H3119.00
H11A—N1A—H13A108.2 (16)C1—C6—H6119.00
H12A—N1A—H13A110.1 (16)C5—C6—H6119.00
C1A—N1A—H12A109.5 (12)C2A—C1A—C3A112.05 (14)
C6—C1—C11112.92 (12)N1A—C1A—C2A109.27 (11)
C2—C1—C6118.71 (12)N1A—C1A—C3A109.03 (12)
C2—C1—C11128.32 (11)N1A—C1A—H1A109.00
C1—C2—C21128.14 (11)C2A—C1A—H1A109.00
C1—C2—C3118.33 (12)C3A—C1A—H1A109.00
C3—C2—C21113.53 (12)C1A—C2A—H21A110.00
C2—C3—C4122.13 (13)C1A—C2A—H22A109.00
Cl4—C4—C5121.21 (10)C1A—C2A—H23A109.00
C3—C4—C5119.29 (12)H21A—C2A—H22A109.00
Cl4—C4—C3119.49 (11)H21A—C2A—H23A109.00
Cl5—C5—C4121.52 (10)H22A—C2A—H23A110.00
C4—C5—C6119.51 (12)C1A—C3A—H31A109.00
Cl5—C5—C6118.94 (11)C1A—C3A—H32A110.00
C1—C6—C5122.01 (13)C1A—C3A—H33A109.00
O11—C11—O12121.09 (13)H31A—C3A—H32A109.00
O11—C11—C1118.87 (11)H31A—C3A—H33A109.00
O12—C11—C1120.03 (12)H32A—C3A—H33A109.00
O21—C21—O22124.07 (12)
C6—C1—C2—C30.72 (18)C1—C2—C21—O2122.83 (19)
C6—C1—C2—C21−179.34 (12)C1—C2—C21—O22−158.69 (13)
C11—C1—C2—C3−176.37 (12)C3—C2—C21—O21−157.23 (12)
C11—C1—C2—C213.6 (2)C3—C2—C21—O2221.26 (17)
C2—C1—C6—C5−1.04 (19)C2—C3—C4—Cl4177.78 (10)
C11—C1—C6—C5176.47 (11)C2—C3—C4—C5−1.10 (19)
C2—C1—C11—O11161.01 (13)Cl4—C4—C5—Cl5−0.02 (16)
C2—C1—C11—O12−20.7 (2)Cl4—C4—C5—C6−178.09 (10)
C6—C1—C11—O11−16.22 (17)C3—C4—C5—Cl5178.86 (10)
C6—C1—C11—O12162.10 (12)C3—C4—C5—C60.78 (18)
C1—C2—C3—C40.34 (19)Cl5—C5—C6—C1−177.84 (10)
C21—C2—C3—C4−179.61 (11)C4—C5—C6—C10.29 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O12—H12···O211.00 (3)1.45 (3)2.4507 (16)179 (3)
N1A—H11A···O110.977 (18)1.875 (18)2.8175 (17)161.2 (15)
N1A—H12A···O21i0.876 (19)2.021 (18)2.8593 (16)159.6 (16)
N1A—H13A···O22ii0.92 (2)1.98 (2)2.8869 (17)168.8 (15)
C3—H3···O220.932.352.6996 (17)102
C6—H6···O110.932.332.6853 (18)102
C3A—H31A···O22i0.962.543.458 (2)160

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2696).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc.125, 4259–4270. [PubMed]
  • Mattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808–814.
  • Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4374–o4375.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. & Wermuth, U. D. (2010). J. Chem. Crystallogr. In the press.
  • Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276–o4277.
  • Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180–o183. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532–o536. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103–o107. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111. [PMC free article] [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2009c). Acta Cryst. E65, o2333. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography