PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o170.
Published online 2009 December 16. doi:  10.1107/S1600536809052908
PMCID: PMC2980215

1,1′-(p-Phenyl­enedimethyl­ene)dipiperidin-4-one

Abstract

In the mol­ecule of the title compound, C18H24N2O2, the piperidine rings are in chair conformations. The crystal structure is stabilized by inter­molecular C—H(...)O hydrogen bonding. There are neither C—H(...)π nor π–π inter­actions in the structure.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For ring puckering parameters, see Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o170-scheme1.jpg

Experimental

Crystal data

  • C18H24N2O2
  • M r = 300.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o170-efi1.jpg
  • a = 6.2701 (5) Å
  • b = 8.0990 (6) Å
  • c = 15.8978 (13) Å
  • β = 98.275 (2)°
  • V = 798.91 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.19 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.984, T max = 0.987
  • 4782 measured reflections
  • 1826 independent reflections
  • 1424 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.123
  • S = 1.05
  • 1826 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052908/bt5127sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052908/bt5127Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV thanks the DST-India for funding through the Young Scientist-Fast Track Proposal.

supplementary crystallographic information

Comment

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the ORTEP drawing (Fig. 1). The piperidone ring exibits chair conformation as evident from the puckering parameters (Q)=0.549 (1) Å, θ = 173.4 (2) °, ψ = 181.9 (1) ° (Cremer & Pople, 1975).

In the crystal structure, an intermolecular C—H···O bond is found generating R22(24) motif (Bernstein et al., 1995).

Experimental

A mixture of 4-piperidone monohydrate hydrochloride (2 mol), 1,4-bis(bromomethyl)benzene (1 mol) and potassium carbonate (6 mol) in anhydrous benzene was refluxed for 7 h. The completion of reaction was monitored by TLC. Potassium carbonate was filtered off and the excess solvent was removed under reduced pressure. The solid obtained was purified over a column of silica gel (60–120 mesh size) using benzene-ethyl acetate (60–80 °C) in the ratio of 20:80. Yield: 40% m.p. 289°C.

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å.Uiso = 1.2Ueq(C) for CH and CH2 groups.

Figures

Fig. 1.
The molecular structure of title compound with atom numbering scheme and 50% probability displacement ellipsoids.

Crystal data

C18H24N2O2F(000) = 324
Mr = 300.39Dx = 1.249 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2500 reflections
a = 6.2701 (5) Åθ = 2–30°
b = 8.0990 (6) ŵ = 0.08 mm1
c = 15.8978 (13) ÅT = 293 K
β = 98.275 (2)°Block, colourless
V = 798.91 (11) Å30.19 × 0.17 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer1826 independent reflections
Radiation source: fine-focus sealed tube1424 reflections with I > 2σ(I)
graphiteRint = 0.014
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −8→4
Tmin = 0.984, Tmax = 0.987k = −10→10
4782 measured reflectionsl = −20→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1074P] where P = (Fo2 + 2Fc2)/3
1826 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.2931 (2)0.43945 (15)0.38729 (9)0.0451 (3)
H2A0.32780.43300.32990.054*
H2B0.41960.40600.42600.054*
C30.2358 (2)0.61783 (16)0.40660 (10)0.0544 (4)
H3A0.21910.62760.46610.065*
H3B0.35190.69050.39590.065*
C40.0312 (2)0.66908 (16)0.35253 (8)0.0440 (3)
C5−0.1488 (2)0.54905 (18)0.35354 (11)0.0584 (4)
H5A−0.26800.57960.31050.070*
H5B−0.19910.55280.40840.070*
C6−0.0757 (2)0.37490 (18)0.33662 (10)0.0544 (4)
H6A−0.19180.29820.34190.065*
H6B−0.04340.36820.27890.065*
C70.1742 (2)0.15730 (16)0.37561 (9)0.0493 (4)
H7A0.22500.15750.32080.059*
H7B0.04580.08910.37050.059*
C80.3452 (2)0.07991 (14)0.44028 (8)0.0405 (3)
C90.3083 (2)0.05404 (16)0.52331 (8)0.0450 (3)
H90.17990.09000.54000.054*
C100.5395 (2)0.02482 (16)0.41824 (8)0.0444 (3)
H100.56820.04110.36310.053*
N10.11571 (16)0.32682 (12)0.39582 (7)0.0395 (3)
O10.01374 (19)0.79483 (13)0.31091 (7)0.0657 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0372 (6)0.0349 (7)0.0605 (8)−0.0033 (5)−0.0021 (5)0.0041 (6)
C30.0595 (8)0.0329 (7)0.0659 (9)−0.0062 (6)−0.0079 (7)0.0018 (6)
C40.0549 (8)0.0322 (6)0.0448 (7)0.0048 (5)0.0072 (6)0.0015 (5)
C50.0415 (7)0.0509 (9)0.0821 (10)0.0057 (6)0.0064 (7)0.0227 (7)
C60.0423 (7)0.0422 (8)0.0731 (10)−0.0085 (6)−0.0107 (7)0.0130 (7)
C70.0586 (8)0.0308 (7)0.0540 (8)−0.0024 (6)−0.0075 (6)−0.0006 (6)
C80.0502 (7)0.0233 (5)0.0464 (7)−0.0019 (5)0.0015 (5)−0.0002 (5)
C90.0462 (7)0.0374 (7)0.0528 (8)0.0024 (5)0.0113 (6)−0.0021 (5)
C100.0573 (8)0.0368 (7)0.0401 (6)−0.0039 (6)0.0106 (6)0.0016 (5)
N10.0389 (5)0.0288 (5)0.0484 (6)−0.0026 (4)−0.0022 (4)0.0059 (4)
O10.0827 (8)0.0385 (6)0.0723 (7)−0.0004 (5)−0.0012 (6)0.0175 (5)

Geometric parameters (Å, °)

C2—N11.4598 (16)C6—H6A0.9700
C2—C31.5304 (18)C6—H6B0.9700
C2—H2A0.9700C7—N11.4685 (17)
C2—H2B0.9700C7—C81.5104 (18)
C3—C41.4964 (19)C7—H7A0.9700
C3—H3A0.9700C7—H7B0.9700
C3—H3B0.9700C8—C91.3884 (18)
C4—O11.2109 (16)C8—C101.3888 (19)
C4—C51.492 (2)C9—C10i1.3882 (18)
C5—C61.519 (2)C9—H90.9300
C5—H5A0.9700C10—C9i1.3882 (18)
C5—H5B0.9700C10—H100.9300
C6—N11.4670 (16)
N1—C2—C3111.55 (11)C5—C6—H6A109.2
N1—C2—H2A109.3N1—C6—H6B109.2
C3—C2—H2A109.3C5—C6—H6B109.2
N1—C2—H2B109.3H6A—C6—H6B107.9
C3—C2—H2B109.3N1—C7—C8114.47 (10)
H2A—C2—H2B108.0N1—C7—H7A108.6
C4—C3—C2110.67 (11)C8—C7—H7A108.6
C4—C3—H3A109.5N1—C7—H7B108.6
C2—C3—H3A109.5C8—C7—H7B108.6
C4—C3—H3B109.5H7A—C7—H7B107.6
C2—C3—H3B109.5C9—C8—C10117.61 (11)
H3A—C3—H3B108.1C9—C8—C7120.72 (12)
O1—C4—C5123.01 (13)C10—C8—C7121.59 (12)
O1—C4—C3123.37 (13)C10i—C9—C8120.89 (12)
C5—C4—C3113.62 (11)C10i—C9—H9119.6
C4—C5—C6110.77 (12)C8—C9—H9119.6
C4—C5—H5A109.5C9i—C10—C8121.50 (12)
C6—C5—H5A109.5C9i—C10—H10119.3
C4—C5—H5B109.5C8—C10—H10119.3
C6—C5—H5B109.5C2—N1—C6109.77 (10)
H5A—C5—H5B108.1C2—N1—C7110.25 (11)
N1—C6—C5111.90 (12)C6—N1—C7108.36 (10)
N1—C6—H6A109.2
N1—C2—C3—C4−54.57 (16)C7—C8—C9—C10i176.62 (11)
C2—C3—C4—O1−129.37 (15)C9—C8—C10—C9i0.3 (2)
C2—C3—C4—C549.69 (17)C7—C8—C10—C9i−176.59 (12)
O1—C4—C5—C6129.33 (15)C3—C2—N1—C659.82 (15)
C3—C4—C5—C6−49.73 (18)C3—C2—N1—C7179.12 (11)
C4—C5—C6—N154.57 (17)C5—C6—N1—C2−60.02 (16)
N1—C7—C8—C962.64 (17)C5—C6—N1—C7179.53 (12)
N1—C7—C8—C10−120.58 (14)C8—C7—N1—C269.70 (15)
C10—C8—C9—C10i−0.3 (2)C8—C7—N1—C6−170.15 (12)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···O1ii0.972.563.2235 (17)126

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5127).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography