PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o6.
Published online 2009 December 4. doi:  10.1107/S1600536809050338
PMCID: PMC2980211

Ammonium hydrogen (RS)-[(5-methyl-2-oxo-1,3-oxazolidin-3-yl)meth­yl]phospho­nate

Abstract

In the title compound, NH4 +·C5H9NO5P, the five-membered methyl­oxazolidin-2-one unit is disordered over two positions, the major component having a site occupancy of 0.832 (9). A three-dimensional network of O—H(...)O and N—H(...)O hydrogen bonds stabilizes the crystal structure.

Related literature

For general background of the use of phospho­nic and amino­phospho­nic acids as chelating agents in metal extraction and as medicinal compounds, see: Metlushka et al. (2009 [triangle]); Naydenova et al. (2009 [triangle]); Matczak-Jon & Videnova-Adrabinska (2005 [triangle]). For related structures, see: Dudko et al. (200 [triangle]9); Shivachev et al. (2005 [triangle]); Todorov et al. (2006 [triangle]); Ying et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-000o6-scheme1.jpg

Experimental

Crystal data

  • NH4 +·C5H9NO5P
  • M r = 212.14
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-000o6-efi1.jpg
  • a = 6.471 (3) Å
  • b = 8.801 (3) Å
  • c = 9.427 (4) Å
  • α = 70.76 (2)°
  • β = 70.658 (18)°
  • γ = 89.363 (16)°
  • V = 475.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 290 K
  • 0.30 × 0.28 × 0.21 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3673 measured reflections
  • 1855 independent reflections
  • 1606 reflections with I > 2σ(I)
  • R int = 0.027
  • 3 standard reflections frequency: 120 min intensity decay: −1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.097
  • S = 1.05
  • 1855 reflections
  • 159 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050338/is2491sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050338/is2491Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the University of Chemical Metallurgy and Technology (project 10646).

supplementary crystallographic information

Comment

Phosphonic and aminophosphonic derivatives have a high potential for biological activity. These derivatives have been widely used in the manufacture of herbicides, as chelating agents in metal extraction and as medicinal compounds (Metlushka et al., 2009; Naydenova et al., 2009; Matczak-Jon & Videnova-Adrabinska, 2005). As part of our ongoing studies of the structure-activity relationships for phosphonic acid derivatives (Todorov et al., 2006; Shivachev et al., 2005) herein we report the structure of the titled compound.

The asymmetric unit of the title compound (Fig. 1) contains one molecule, with a proton transferred from the phosphonic group to the ammonia group. The ammonium cation attendant in structure neutralizes the negatively charged phosphonic acid residue. In the crystal structure, the methyloxazolidin-2-one moiety is disordered over two positions. In one of them (major occupancy) the oxazolidine ring (N1/C2/C3/O5/c4) is almost planar [r.m.s. of 0.017 (2) Å] while in the other one it adopts an envelope conformation, with atom C22 deviating within 0.367 (33) Å from the plane defined by the other four atoms [N1/C4/O25/C23 with r.m.s. 0.006 (5) Å]. Bond lengths and angles have normal values and compare well with related structures (Allen et al., 1987; Dudko et al., 2009; Ying et al., 2007; Todorov et al., 2006). The phosphorus atom displays a slightly distorted tetrahedral geometry provided by three oxygen atoms and one carbon atom.

The crystal structure of title compound shows three-dimensional network of O—H···O and N—H···O hydrogen bonds which additionally stabilize the structure (Table 1 and Fig. 2).

Experimental

The title compound, NH4+.C5H10N2O5P-, was obtained from the reaction of 5-methyloxazolidin-2-one with formaldehyde and phosphorus trichloride in glacial acetic acid. The solution was left at room temperature. Colorless crystals of the title compound were obtained after several days staying.

Refinement

The hydroxy and ammonium H atoms were located in a difference map. H atoms bonded to C were placed in idealized positions (C—H = 0.97 Å for CH3, C—H = 0.96 Å for CH2 and C—H = 0.98 Å for CH). All H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, O) and Uiso(H) = 1.5Ueq(methyl C). The Uiso(H) values of N-bound H atoms were freely refined.

Figures

Fig. 1.
The asymmetric unit of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Minor occupancy disorder component is represented with dashed lines.
Fig. 2.
A view of the molecular packing in the title compound. All H atoms not involved in the short contact interactions have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y, z + 1; (ii) 1 + x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x ...

Crystal data

NH4+·C5H9NO5PZ = 2
Mr = 212.14F(000) = 224
Triclinic, P1Dx = 1.482 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 6.471 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.801 (3) ÅCell parameters from 22 reflections
c = 9.427 (4) Åθ = 18.2–19.9°
α = 70.76 (2)°µ = 0.28 mm1
β = 70.658 (18)°T = 290 K
γ = 89.363 (16)°Prismatic, pale yellow
V = 475.4 (3) Å30.30 × 0.28 × 0.21 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.027
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.4°
graphiteh = −7→7
ω/2θ scansk = −10→10
3673 measured reflectionsl = −11→11
1855 independent reflections3 standard reflections every 120 min
1606 reflections with I > 2σ(I) intensity decay: −1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1432P] where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
P10.41857 (7)0.24449 (5)0.45738 (5)0.02797 (16)
O30.5389 (2)0.15751 (15)0.56719 (15)0.0337 (3)
O10.2459 (2)0.34533 (16)0.51681 (16)0.0398 (3)
O40.6905 (3)0.3598 (2)−0.03575 (18)0.0551 (4)
O20.3153 (2)0.12049 (16)0.40620 (19)0.0451 (4)
H1A0.39570.01290.41920.054*
N10.7900 (3)0.3121 (2)0.18552 (19)0.0384 (4)
C40.8154 (3)0.3152 (3)0.0385 (2)0.0409 (5)
C10.6134 (3)0.3843 (2)0.2730 (2)0.0344 (4)
H1B0.53310.43840.20350.041*
H1C0.67780.46640.29850.041*
N20.2060 (2)0.66240 (18)0.34358 (18)0.0328 (4)
HN20.07040.67900.38370.045 (6)*
HN10.22220.56700.39720.052 (7)*
HN30.30090.73180.34850.056 (7)*
HN40.25410.67120.23220.054 (7)*
C20.9747 (8)0.2620 (6)0.2347 (6)0.0391 (10)0.832 (9)
H2A0.93230.16670.33090.047*0.832 (9)
H2B1.04330.34800.25270.047*0.832 (9)
O51.0145 (8)0.2687 (6)−0.0269 (6)0.0502 (9)0.832 (9)
C51.1711 (12)0.0514 (6)0.1183 (8)0.094 (2)0.832 (9)
H5A1.26410.04000.02000.141*0.832 (9)
H5B1.0342−0.01590.15780.141*0.832 (9)
H5C1.24320.01910.19610.141*0.832 (9)
C31.1272 (5)0.2245 (4)0.0887 (3)0.0421 (10)0.832 (9)
H31.26770.29320.04430.050*0.832 (9)
C220.988 (5)0.221 (3)0.217 (3)0.039 (5)0.168 (9)
H22A1.11190.29840.19180.047*0.168 (9)
H22B0.94590.15360.32920.047*0.168 (9)
O250.957 (3)0.209 (3)−0.005 (3)0.043 (4)0.168 (9)
C251.273 (4)0.128 (3)0.054 (3)0.070 (7)0.168 (9)
H25A1.30780.0833−0.03050.105*0.168 (9)
H25B1.32860.06480.13520.105*0.168 (9)
H25C1.34040.23760.01120.105*0.168 (9)
C231.047 (3)0.125 (2)0.1196 (16)0.041 (5)0.168 (9)
H230.97580.01330.17810.049*0.168 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0290 (3)0.0249 (2)0.0322 (3)0.00831 (17)−0.01321 (19)−0.01013 (19)
O30.0414 (7)0.0289 (6)0.0372 (7)0.0081 (5)−0.0215 (6)−0.0115 (6)
O10.0367 (7)0.0324 (7)0.0418 (8)0.0125 (6)−0.0063 (6)−0.0097 (6)
O40.0615 (10)0.0769 (11)0.0407 (8)0.0307 (9)−0.0294 (8)−0.0266 (8)
O20.0516 (8)0.0327 (7)0.0715 (10)0.0147 (6)−0.0440 (8)−0.0214 (7)
N10.0343 (8)0.0544 (10)0.0328 (8)0.0181 (8)−0.0147 (7)−0.0202 (8)
C40.0418 (11)0.0482 (12)0.0313 (10)0.0140 (9)−0.0122 (9)−0.0129 (9)
C10.0363 (10)0.0335 (9)0.0314 (9)0.0108 (8)−0.0100 (8)−0.0107 (8)
N20.0338 (9)0.0310 (8)0.0338 (8)0.0066 (6)−0.0128 (7)−0.0108 (7)
C20.0315 (15)0.054 (3)0.0355 (17)0.0178 (18)−0.0107 (12)−0.0209 (18)
O50.046 (2)0.065 (2)0.0321 (13)0.0220 (15)−0.0070 (15)−0.0147 (17)
C50.158 (7)0.063 (3)0.130 (5)0.064 (3)−0.111 (5)−0.059 (3)
C30.0309 (14)0.045 (2)0.0543 (17)0.0107 (13)−0.0152 (12)−0.0220 (14)
C220.059 (9)0.041 (11)0.044 (8)0.037 (8)−0.042 (7)−0.037 (8)
O250.034 (9)0.067 (12)0.035 (8)0.023 (7)−0.013 (7)−0.025 (9)
C250.066 (14)0.087 (18)0.104 (19)0.049 (11)−0.050 (13)−0.073 (16)
C230.045 (8)0.037 (9)0.043 (7)0.009 (7)−0.015 (6)−0.016 (6)

Geometric parameters (Å, °)

P1—O11.4969 (14)C2—C31.539 (5)
P1—O31.5041 (13)C2—H2A0.9700
P1—O21.5645 (14)C2—H2B0.9700
P1—C11.816 (2)O5—C31.454 (6)
O4—C41.218 (2)C5—C31.497 (6)
O2—H1A1.0666C5—H5A0.9600
N1—C41.332 (3)C5—H5B0.9600
N1—C21.435 (6)C5—H5C0.9600
N1—C11.447 (2)C3—H30.9800
N1—C221.56 (2)C22—C231.41 (2)
C4—O51.355 (5)C22—H22A0.9700
C4—O251.36 (2)C22—H22B0.9700
C1—H1B0.9700O25—C231.46 (3)
C1—H1C0.9700C25—C231.39 (3)
N2—HN20.8645C25—H25A0.9600
N2—HN10.8517C25—H25B0.9600
N2—HN30.8934C25—H25C0.9600
N2—HN40.9676C23—H230.9800
O1—P1—O3117.20 (8)H2A—C2—H2B109.3
O1—P1—O2109.29 (9)C4—O5—C3109.8 (4)
O3—P1—O2109.68 (8)C3—C5—H5A109.5
O1—P1—C1104.86 (8)C3—C5—H5B109.5
O3—P1—C1109.63 (9)H5A—C5—H5B109.5
O2—P1—C1105.49 (10)C3—C5—H5C109.4
P1—O2—H1A112.0H5A—C5—H5C109.5
C4—N1—C2114.0 (2)H5B—C5—H5C109.5
C4—N1—C1122.16 (16)O5—C3—C5108.1 (3)
C2—N1—C1122.7 (2)O5—C3—C2104.9 (3)
C4—N1—C22101.9 (8)C5—C3—C2115.8 (4)
C1—N1—C22135.9 (8)O5—C3—H3109.2
O4—C4—N1127.90 (19)C5—C3—H3109.2
O4—C4—O5122.2 (3)C2—C3—H3109.3
N1—C4—O5109.8 (3)C23—C22—N1108.1 (16)
O4—C4—O25116.8 (9)C23—C22—H22A110.5
N1—C4—O25111.6 (10)N1—C22—H22A110.4
N1—C1—P1115.39 (13)C23—C22—H22B109.8
N1—C1—H1B108.4N1—C22—H22B109.7
P1—C1—H1B108.4H22A—C22—H22B108.3
N1—C1—H1C108.4C4—O25—C23112.2 (16)
P1—C1—H1C108.4C23—C25—H25A109.5
H1B—C1—H1C107.5C23—C25—H25B109.5
HN2—N2—HN1108.1H25A—C25—H25B109.5
HN2—N2—HN3112.5C23—C25—H25C109.4
HN1—N2—HN3108.1H25A—C25—H25C109.5
HN2—N2—HN4115.2H25B—C25—H25C109.5
HN1—N2—HN4107.4C25—C23—C22112 (2)
HN3—N2—HN4105.2C25—C23—O25110.4 (17)
N1—C2—C3101.4 (3)C22—C23—O25100.2 (16)
N1—C2—H2A111.6C25—C23—H23111.1
C3—C2—H2A111.5C22—C23—H23111.5
N1—C2—H2B111.5O25—C23—H23111.2
C3—C2—H2B111.4
C2—N1—C4—O4−176.3 (3)O4—C4—O5—C3179.2 (2)
C1—N1—C4—O4−8.3 (4)N1—C4—O5—C32.6 (4)
C22—N1—C4—O4172.4 (11)O25—C4—O5—C3−96 (3)
C2—N1—C4—O50.1 (3)C4—O5—C3—C5120.3 (5)
C1—N1—C4—O5168.1 (3)C4—O5—C3—C2−3.9 (4)
C22—N1—C4—O5−11.2 (11)N1—C2—C3—O53.7 (4)
C2—N1—C4—O2526.4 (9)N1—C2—C3—C5−115.5 (5)
C1—N1—C4—O25−165.6 (9)C4—N1—C22—C23−25 (2)
C22—N1—C4—O2515.1 (13)C2—N1—C22—C23−165 (6)
C4—N1—C1—P1117.3 (2)C1—N1—C22—C23156.3 (11)
C2—N1—C1—P1−75.7 (3)O4—C4—O25—C23−161.7 (9)
C22—N1—C1—P1−63.7 (15)N1—C4—O25—C23−1.7 (15)
O1—P1—C1—N1−175.71 (13)O5—C4—O25—C2389 (3)
O3—P1—C1—N157.66 (16)N1—C22—C23—C25140 (2)
O2—P1—C1—N1−60.36 (15)N1—C22—C23—O2522 (2)
C4—N1—C2—C3−2.4 (4)C4—O25—C23—C25−132 (2)
C1—N1—C2—C3−170.3 (2)C4—O25—C23—C22−14 (2)
C22—N1—C2—C341 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—HN1···O10.851.942.789 (2)177
O2—H1A···O3i1.071.532.5770 (19)166
N2—HN2···O1ii0.861.932.772 (2)165
N2—HN3···O3iii0.891.932.793 (2)161
N2—HN4···O4iv0.971.882.827 (2)167

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2491).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, o1961. [PMC free article] [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev.249, 2458–2488.
  • Metlushka, K. E., Kashemirov, B. A., Zheltukhin, V. F., Sadkova, D. N., Buchner, B., Hess, C., Kataeva, O. N., McKenna, C. N. & Alfonsov, V. A. (2009). Chem. Eur. J.15, 6718–6722. [PubMed]
  • Naydenova, E. D., Todorov, P. T. & Troev, K. D. (2009). Amino Acids In the press, doi: 10.1007/s00726-009-0254-7.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shivachev, B., Petrova, R., Kossev, K. & Troev, K. (2005). Acta Cryst. E61, o134–o136.
  • Todorov, P., Naydenova, E., Petrova, R., Shivachev, B. & Troev, K. (2006). Acta Cryst. C62, o661–o662. [PubMed]
  • Ying, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153–o1154.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography