PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o198.
Published online 2009 December 19. doi:  10.1107/S1600536809053938
PMCID: PMC2980206

1-Methyl-4-(1-methyl-1H-benzimidazol-2-yl)pyridinium iodide

Abstract

The cation of the title compound, C14H14N3 +·I, is non-planar, the dihedral angle between the benzimidazole and the 1-methyl­pyridinium planes being 37.4 (2)°. The crystal structure is stabilized by weak π–π stacking inter­actions, the centroid–centroid distances between 1-methyl­imidazole and benzimidazole planes being 3.678 (4) Å.

Related literature

For background to imidazole and its derivatives, see: Huang et al. (2004 [triangle]). For the biological activity of benzimidazole, see: Demirayak et al. (2002 [triangle]); Pawar et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o198-scheme1.jpg

Experimental

Crystal data

  • C14H14N3 +·I
  • M r = 351.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o198-efi1.jpg
  • a = 7.7048 (15) Å
  • b = 9.9264 (18) Å
  • c = 10.1772 (19) Å
  • α = 64.888 (3)°
  • β = 72.933 (3)°
  • γ = 76.394 (4)°
  • V = 668.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.38 mm−1
  • T = 291 K
  • 0.35 × 0.25 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.493, T max = 0.887
  • 3353 measured reflections
  • 2307 independent reflections
  • 1840 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.092
  • S = 1.00
  • 2307 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053938/bx2252sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053938/bx2252Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Jiangsu University of Science and Technology.

supplementary crystallographic information

Comment

Imidazole and its derivatives are a very important kind of heterocyclic compounds with N-donor atoms, therefore they can be excellent organic ligands to generate various complexes (Huang et al., 2004). Owing to its biological activities such as antimicrobial, antifungal (Pawar et al., 2004), anticancer (Demirayak et al., 2002), and so on, benzimidazoles have also received much attention. The construction of new member of this family is an important direction in the development of modern coordination chemistry and biological chemistry. We report here the synthesis and crystal structure of the title compound. The molecular structure is shown in Fig. 1. The cation of (I) is non-planar, the dihedral angle between the benzimidazolyl plane and the N-methylpyridinium plane is 37.4 (2)°. The crystal structure is stabilized by π–π [Cg1: N2-C7-N3-C13-C8; Cg2(i): C8/C13, code symmetry: (i) -x+2, -y+1, -z] stacking interaction, the distance centroid-centroid between these planes is 3.678 (4) Å. The crystal packing also exhibits a weak intermolecular C—H···I interaction.

Experimental

Metallic sodium (0.25 g, 10.8 mmol) was dissolved in the stirred anhydrous ethanol(10 ml) under an atmosphere of nitrogen. Then added 2-(4-pyridinyl)-1H-benzimidazole (1.95 g, 10 mmol), dry actone (150 ml) and methyl iodide(1.24 ml, 20 mmol) in the above solution. The reaction mixture was refluxed for 24 h. When the reaction stopped and the mixture were cooled to room temperature, the solution were removed under decompression. Then the residue recrystallized from water twice to obtain the single crystals (3.0 g, 8.66 mmol).

Refinement

All H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93—0.96 Å, and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C14H14N3+·IZ = 2
Mr = 351.18F(000) = 344
Triclinic, P1Dx = 1.745 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7048 (15) ÅCell parameters from 1236 reflections
b = 9.9264 (18) Åθ = 3.1–22.1°
c = 10.1772 (19) ŵ = 2.38 mm1
α = 64.888 (3)°T = 291 K
β = 72.933 (3)°Piece, colorless
γ = 76.394 (4)°0.35 × 0.25 × 0.05 mm
V = 668.2 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2307 independent reflections
Radiation source: sealed tube1840 reflections with I > 2σ(I)
graphiteRint = 0.058
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→7
Tmin = 0.493, Tmax = 0.887k = −10→11
3353 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0301P)2] where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)7.5483 (0.0040) x + 0.9256 (0.0225) y + 1.1206 (0.0247) z = 6.5511 (0.0171)* 0.0017 (0.0039) N1 * 0.0018 (0.0041) C2 * -0.0063 (0.0040) C3 * 0.0074 (0.0040) C4 * -0.0041 (0.0042) C5 * -0.0004 (0.0041) C6Rms deviation of fitted atoms = 0.00446.8822 (0.0088) x + 3.4760 (0.0239) y + 7.0324 (0.0184) z = 8.6547 (0.0229)Angle to previous plane (with approximate e.s.d.) = 37.43 (0.15)* -0.0020 (0.0031) C7 * -0.0067 (0.0031) N2 * 0.0128 (0.0031) C8 * -0.0138 (0.0030) C13 * 0.0098 (0.0030) N3Rms deviation of fitted atoms = 0.0100
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7976 (9)0.1720 (7)0.3724 (7)0.0574 (18)
H1A0.78500.14180.47740.086*
H1B0.91490.12930.33110.086*
H1C0.70270.13740.35570.086*
C20.7960 (8)0.4044 (7)0.1519 (7)0.0443 (15)
H2A0.81210.34520.09770.053*
C30.7870 (8)0.5551 (6)0.0807 (7)0.0422 (15)
H3A0.79480.5992−0.02140.051*
C40.7660 (8)0.6442 (6)0.1610 (6)0.0387 (14)
C50.7505 (8)0.5736 (6)0.3135 (6)0.0422 (15)
H5A0.73370.62970.37070.051*
C60.7598 (8)0.4226 (7)0.3784 (7)0.0445 (15)
H6A0.75060.37590.48060.053*
C70.7700 (8)0.8070 (6)0.0779 (6)0.0339 (13)
C80.8426 (8)1.0150 (6)−0.0938 (6)0.0395 (14)
C90.9152 (8)1.1306 (7)−0.2232 (7)0.0443 (15)
H9A1.00631.1104−0.29830.053*
C100.8473 (9)1.2748 (7)−0.2354 (7)0.0498 (17)
H10A0.89411.3536−0.32020.060*
C110.7082 (9)1.3076 (7)−0.1230 (7)0.0482 (16)
H11A0.66441.4071−0.13610.058*
C120.6369 (8)1.1955 (6)0.0047 (7)0.0423 (15)
H12A0.54541.21610.07930.051*
C130.7076 (7)1.0494 (6)0.0175 (6)0.0344 (13)
C140.5260 (8)0.8957 (7)0.2645 (7)0.0478 (16)
H14A0.52250.79090.32450.072*
H14B0.40900.94050.24000.072*
H14C0.55410.94380.31870.072*
I10.26309 (6)0.26836 (5)0.37099 (4)0.05037 (19)
N10.7821 (6)0.3387 (5)0.2996 (6)0.0432 (12)
N20.8779 (7)0.8606 (5)−0.0548 (5)0.0426 (12)
N30.6668 (6)0.9141 (5)0.1277 (5)0.0367 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.062 (5)0.042 (4)0.064 (5)−0.010 (3)−0.008 (4)−0.019 (3)
C20.047 (4)0.049 (4)0.045 (4)−0.011 (3)−0.011 (3)−0.023 (3)
C30.043 (4)0.046 (4)0.042 (4)0.001 (3)−0.011 (3)−0.022 (3)
C40.030 (3)0.047 (4)0.042 (4)−0.001 (3)−0.008 (3)−0.021 (3)
C50.046 (4)0.045 (4)0.042 (4)−0.010 (3)−0.007 (3)−0.022 (3)
C60.053 (4)0.044 (4)0.037 (3)−0.004 (3)−0.008 (3)−0.018 (3)
C70.032 (3)0.039 (3)0.033 (3)−0.005 (3)−0.008 (3)−0.016 (3)
C80.043 (4)0.042 (4)0.039 (3)−0.006 (3)−0.016 (3)−0.016 (3)
C90.045 (4)0.046 (4)0.043 (4)−0.011 (3)−0.010 (3)−0.016 (3)
C100.052 (4)0.051 (4)0.046 (4)−0.020 (3)−0.021 (3)−0.005 (3)
C110.048 (4)0.038 (4)0.065 (5)−0.001 (3)−0.024 (4)−0.021 (3)
C120.041 (4)0.044 (4)0.048 (4)0.001 (3)−0.013 (3)−0.024 (3)
C130.032 (3)0.041 (4)0.036 (3)−0.003 (3)−0.014 (3)−0.017 (3)
C140.042 (4)0.047 (4)0.053 (4)−0.004 (3)−0.008 (3)−0.021 (3)
I10.0493 (3)0.0535 (3)0.0478 (3)−0.0021 (2)−0.0128 (2)−0.0197 (2)
N10.034 (3)0.039 (3)0.057 (3)−0.003 (2)−0.013 (3)−0.017 (3)
N20.045 (3)0.046 (3)0.044 (3)−0.006 (2)−0.014 (3)−0.021 (2)
N30.031 (3)0.045 (3)0.038 (3)−0.004 (2)−0.009 (2)−0.020 (3)

Geometric parameters (Å, °)

C1—N11.490 (8)C8—N21.389 (7)
C1—H1A0.9600C8—C131.397 (8)
C1—H1B0.9600C8—C91.397 (8)
C1—H1C0.9600C9—C101.368 (8)
C2—N11.343 (7)C9—H9A0.9300
C2—C31.353 (8)C10—C111.412 (9)
C2—H2A0.9300C10—H10A0.9300
C3—C41.395 (7)C11—C121.368 (8)
C3—H3A0.9300C11—H11A0.9300
C4—C51.386 (7)C12—C131.388 (7)
C4—C71.475 (8)C12—H12A0.9300
C5—C61.350 (7)C13—N31.369 (7)
C5—H5A0.9300C14—N31.462 (7)
C6—N11.336 (7)C14—H14A0.9600
C6—H6A0.9300C14—H14B0.9600
C7—N21.318 (7)C14—H14C0.9600
C7—N31.357 (7)
N1—C1—H1A109.5C10—C9—H9A121.3
N1—C1—H1B109.5C8—C9—H9A121.3
H1A—C1—H1B109.5C9—C10—C11122.1 (6)
N1—C1—H1C109.5C9—C10—H10A119.0
H1A—C1—H1C109.5C11—C10—H10A119.0
H1B—C1—H1C109.5C12—C11—C10121.1 (6)
N1—C2—C3121.1 (5)C12—C11—H11A119.5
N1—C2—H2A119.5C10—C11—H11A119.5
C3—C2—H2A119.5C11—C12—C13116.7 (6)
C2—C3—C4119.7 (6)C11—C12—H12A121.6
C2—C3—H3A120.1C13—C12—H12A121.6
C4—C3—H3A120.1N3—C13—C12131.6 (5)
C5—C4—C3118.0 (5)N3—C13—C8105.5 (5)
C5—C4—C7123.9 (5)C12—C13—C8122.9 (6)
C3—C4—C7118.1 (5)N3—C14—H14A109.5
C6—C5—C4119.6 (5)N3—C14—H14B109.5
C6—C5—H5A120.2H14A—C14—H14B109.5
C4—C5—H5A120.2N3—C14—H14C109.5
N1—C6—C5121.8 (6)H14A—C14—H14C109.5
N1—C6—H6A119.1H14B—C14—H14C109.5
C5—C6—H6A119.1C6—N1—C2119.9 (5)
N2—C7—N3114.0 (5)C6—N1—C1121.0 (5)
N2—C7—C4121.4 (5)C2—N1—C1119.1 (5)
N3—C7—C4124.6 (5)C7—N2—C8103.7 (5)
N2—C8—C13110.2 (5)C7—N3—C13106.5 (5)
N2—C8—C9130.0 (6)C7—N3—C14128.7 (5)
C13—C8—C9119.8 (5)C13—N3—C14124.6 (5)
C10—C9—C8117.4 (6)
N1—C2—C3—C41.1 (9)N2—C8—C13—C12−176.0 (5)
C2—C3—C4—C5−1.6 (9)C9—C8—C13—C121.7 (8)
C2—C3—C4—C7175.7 (5)C5—C6—N1—C20.1 (9)
C3—C4—C5—C61.3 (9)C5—C6—N1—C1178.2 (6)
C7—C4—C5—C6−175.7 (5)C3—C2—N1—C6−0.3 (9)
C4—C5—C6—N1−0.6 (9)C3—C2—N1—C1−178.5 (6)
C5—C4—C7—N2141.4 (6)N3—C7—N2—C80.4 (6)
C3—C4—C7—N2−35.7 (8)C4—C7—N2—C8−179.7 (5)
C5—C4—C7—N3−38.7 (8)C13—C8—N2—C7−1.9 (6)
C3—C4—C7—N3144.2 (5)C9—C8—N2—C7−179.3 (6)
N2—C8—C9—C10176.4 (5)N2—C7—N3—C131.2 (6)
C13—C8—C9—C10−0.8 (8)C4—C7—N3—C13−178.7 (5)
C8—C9—C10—C11−0.4 (8)N2—C7—N3—C14176.0 (5)
C9—C10—C11—C120.9 (9)C4—C7—N3—C14−3.8 (8)
C10—C11—C12—C13−0.1 (8)C12—C13—N3—C7176.2 (5)
C11—C12—C13—N3−179.4 (5)C8—C13—N3—C7−2.2 (5)
C11—C12—C13—C8−1.2 (8)C12—C13—N3—C141.1 (9)
N2—C8—C13—N32.6 (6)C8—C13—N3—C14−177.3 (5)
C9—C8—C13—N3−179.7 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2252).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Demirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem.37, 255–260. [PubMed]
  • Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc.126, 13218–13219. [PubMed]
  • Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci.21, 115–118 [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography