PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o58–o59.
Published online 2009 December 4. doi:  10.1107/S1600536809051307
PMCID: PMC2980202

N-(3,4-Dichloro­phen­yl)-3-oxo­butanamide

Abstract

In the title compound. C10H9Cl2NO2, the acetamide residue is twisted out of the phenyl ring plane by 25.40 (9)°. An intra­molecular C—H(...)O close contact is observed. The N atom of the butanamide unit forms an inter­molecular N—H(...)O hydrogen bond with the symmetry-related carbonyl O atom, inter­linking mol­ecules into a C(4) chain along [100]. Additional C—H(...)O inter­molecular inter­actions and Cl(...)Cl contacts [3.4364 (8) Å] contribute to the stability of the crystal packing.

Related literature

For the synthesis and biological activity of the title compound, see: Lliopoulos et al. (1986 [triangle]); Grissar et al. (1982 [triangle]). For related structures, see: Whitaker (1986 [triangle], 1987 [triangle], 1988 [triangle]); Whitaker & Walker (1987 [triangle]); Brown & Yadav (1984 [triangle]); Tai et al. (2005 [triangle]); Sundar et al. (2005 [triangle]); Guo (2004 [triangle]); Robin et al. (2002 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For density functional theory (DFT), see: Becke (1988 [triangle], 1993 [triangle]); Hehre et al. (1986 [triangle]); Lee et al. (1988 [triangle]); Schmidt & Polik (2007 [triangle]). For the GAUSSIAN03 program package, see: Frisch et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o58-scheme1.jpg

Experimental

Crystal data

  • C10H9Cl2NO2
  • M r = 246.08
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o58-efi1.jpg
  • a = 9.7171 (4) Å
  • b = 8.2834 (5) Å
  • c = 27.4857 (16) Å
  • V = 2212.3 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 200 K
  • 0.56 × 0.35 × 0.14 mm

Data collection

  • Oxford Diffraction Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.725, T max = 0.924
  • 16980 measured reflections
  • 3745 independent reflections
  • 1910 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.123
  • S = 1.04
  • 3745 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051307/ci2974sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051307/ci2974Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Acetoacetanilide, a very useful chemical intermediate in the production of pigments (Whitaker, 1986, 1987, 1988; Whitaker & Walker, 1987; Brown & Yadav, 1984) possesses cardiotonic, antihypertensive and anti-thrombic properties (Grissar et al., 1982). The title compound, (I), is used as an intermediate in the synthesis of acetoacetanilide and a variety of other biologically important heterocyclic compounds containing pyridine, pyrimidine and imidazole. In the view of the importance of (I), its crystal structure is determined.

In (I), the C═O bond lengths are 1.2292 (18) Å and 1.207 (2) Å which confirms that the compound is in the keto form (Fig. 1). The phenyl ring (C1–C6) is planar with a maximum deviation of 0.007 (1) Å for the C1 atom, from the least-squares plane of the ring. The short C—N distances of 1.407 (2) and 1.346 (2) Å and C1—N—C7 larger bond angle of 126.9 (13)° may be attributed to the involvement of the butanamide N atom in the intermolecular N—H···O interaction and a short intramolecular contact (1.95 Å) between O1 and H0A which is less than their van der Waals radii (2.72 Å). Similar short contacts are also observed in other related structures containing the acetamide residue (Sundar et al., 2005; Guo, 2004; Robin et al., 2002). Atoms N, C7, O1 and C8 forming the acetamide residue are coplanar with a maximum deviation of -0.005 (2) Å for the C7 atom. The acetamide residue is twisted considerably from the least-squares plane of phenyl ring having a dihedral angle of 25.40 (9)°. Atoms C8, C9, O2 and C10 from the O-acetyl group are also coplanar displaying a dihedral angle of 49.21 (10)° with the mean plane of the phenyl ring (C1—C6) and 73.78 (11)° with the least-squares plane of the acetamide residue.

The N atom in the butanamide moiety forms an intermolecular hydrogen bond (N—H0A···O1) with the symmetry related carbonyl oxygen atom interlinking molecules into an one-dimensional chain along the [100] (Fig. 2 and Table 1) forming a C(4) graph-set motif (Bernstein et al.,1995). Torsional angles C7—C8—C9—O2 (15.9 (2)°) and O1—C7—C8—C9 (67.3 (2)°) about C8—C9 and C7—C8, respectively, suggest the involvement of O1 and O2 atoms in a weak C—H···O1 intermolecular hydrogen bonding interaction. Atoms C2 from the phenyl ring (C1–C6) and C8 from the butanamide group form weak, bifurcated intermolecular hydrogen bonds with nearby symmetry related O2 atoms (Table 2). In addition, a short intramolecular C—H···O contact (Table 2) and a weak intermolecular Cl···Cl contact (3.4364 (8) Å) exists which influences crystal packing.

Following a density functional theory calculation (Schmidt & Polik 2007) at the B3LYP 6–31-G(d) level (Becke, 1988, 1993; Lee et al. 1988; Hehre et al. 1986) with the GAUSSIAN03 program package (Frisch et al. 2004) the angle between the mean planes of the C8/C9/O2/C10 and N/C7/O1/C8 groups change from 73.7 (8)° to 33.0 (2)°. The angle between the least-squares plane of the benzene ring and the mean planes of the C8/C9/O2/C10 and N/C7O1/C8 groups change from 49.2 (1)° and 25.4 (1)° to 30.1 (5)° and 3.6 (5)°, respectively. This results in twisting the C8═O2 keto group to be in the proximity of the butanamide N atom forming a pseudo intramolecular N—H···O hydrogen bond interaction (D–H = 1.02 (0) Å; H···A = 1.92 (0) Å; D···A = 2.76 (1) Å; D–H···A = 137.6 (9)°). These results support the collective effects of the intra and intermolecular hydrogen bonding described above influencing crystal packing.

Experimental

The title compound was prepared by a method similar to that of Lliopoulos et al. (1986). A solution of 3,4-dichloroaniline (10 mmol) in benzene (30 ml) was added to a solution of ethyl acetoacetate (10 mmol) and the reaction mixture was refluxed for 2 h with stirring. The resulting precipitate was collected by filtration, washed several times with benzene and dried in vacuo (yield 86%). An ethanol solution of the title compound was allowed to evaporate slowly and colorless crystals of (I) were obtained after a week.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C–H = 0.95–0.99 Å, N–H = 0.88Å and with Uiso(H) = 1.19–1.50Ueq(C) and 1.18Ueq(N).

Figures

Fig. 1.
The molecular structure of C10H9NO2Cl2, (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
Fig. 2.
Molecular packing for (I) viewed down the b axis. Dashed lines indicate N—H···O and C—H···O intermolecular hydrogen bonds.

Crystal data

C10H9Cl2NO2F(000) = 1008
Mr = 246.08Dx = 1.478 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4228 reflections
a = 9.7171 (4) Åθ = 4.9–32.4°
b = 8.2834 (5) ŵ = 0.56 mm1
c = 27.4857 (16) ÅT = 200 K
V = 2212.3 (2) Å3Plate, colorless
Z = 80.56 × 0.35 × 0.14 mm

Data collection

Oxford Diffraction Gemini diffractometer3745 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.9°
[var phi] and ω scansh = −14→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −11→12
Tmin = 0.725, Tmax = 0.924l = −39→39
16980 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0634P] where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.44746 (6)0.24662 (8)0.45002 (2)0.0723 (2)
Cl20.72279 (6)0.05651 (7)0.47381 (2)0.0685 (2)
O10.79285 (11)0.25949 (19)0.23755 (5)0.0569 (4)
O20.64604 (16)0.07935 (16)0.15306 (6)0.0661 (4)
N0.58187 (12)0.24207 (16)0.27204 (5)0.0362 (3)
H0A0.49320.25050.26610.043*
C10.61935 (15)0.19559 (18)0.31946 (6)0.0335 (4)
C20.52923 (16)0.2333 (2)0.35679 (7)0.0390 (4)
H2A0.44530.28720.34960.047*
C30.56032 (17)0.1931 (2)0.40451 (7)0.0429 (4)
C40.68175 (19)0.1122 (2)0.41514 (7)0.0431 (4)
C50.77092 (18)0.0733 (2)0.37786 (7)0.0444 (4)
H5A0.85430.01850.38510.053*
C60.74098 (17)0.1129 (2)0.33015 (7)0.0401 (4)
H6A0.80270.08400.30480.048*
C70.66728 (16)0.2750 (2)0.23478 (7)0.0382 (4)
C80.60112 (17)0.3356 (2)0.18869 (7)0.0420 (4)
H8A0.64410.43950.17950.050*
H8B0.50230.35600.19490.050*
C90.61455 (17)0.2188 (2)0.14672 (7)0.0434 (4)
C100.5849 (2)0.2844 (3)0.09710 (8)0.0644 (6)
H10A0.58980.19690.07320.097*
H10B0.65290.36750.08900.097*
H10C0.49250.33190.09670.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0658 (4)0.0910 (5)0.0601 (3)0.0116 (3)0.0270 (3)0.0049 (3)
Cl20.0810 (4)0.0739 (4)0.0507 (3)−0.0003 (3)−0.0064 (3)0.0127 (3)
O10.0190 (6)0.0920 (11)0.0598 (8)0.0011 (6)0.0034 (5)0.0184 (8)
O20.0785 (10)0.0437 (8)0.0759 (11)0.0137 (7)−0.0205 (8)0.0024 (7)
N0.0162 (5)0.0413 (8)0.0510 (8)0.0006 (6)0.0005 (6)0.0015 (7)
C10.0230 (7)0.0275 (8)0.0500 (10)−0.0048 (6)−0.0003 (7)−0.0027 (7)
C20.0258 (8)0.0354 (9)0.0557 (11)−0.0007 (7)0.0047 (7)−0.0004 (8)
C30.0395 (10)0.0379 (9)0.0514 (11)−0.0054 (8)0.0113 (8)0.0002 (8)
C40.0477 (10)0.0373 (9)0.0443 (11)−0.0068 (8)−0.0028 (8)0.0046 (8)
C50.0388 (9)0.0372 (10)0.0572 (12)0.0056 (8)−0.0034 (9)0.0019 (9)
C60.0314 (8)0.0382 (10)0.0508 (10)0.0051 (7)0.0012 (8)−0.0022 (8)
C70.0232 (7)0.0385 (9)0.0530 (10)−0.0001 (7)0.0013 (7)0.0031 (8)
C80.0285 (8)0.0382 (10)0.0593 (12)0.0045 (8)0.0020 (8)0.0094 (8)
C90.0276 (8)0.0425 (11)0.0601 (12)0.0027 (8)−0.0050 (8)0.0089 (9)
C100.0637 (13)0.0739 (15)0.0558 (13)0.0119 (11)−0.0047 (11)0.0150 (11)

Geometric parameters (Å, °)

Cl1—C31.7215 (18)C4—C51.380 (3)
Cl2—C41.7241 (19)C5—C61.383 (3)
O1—C71.2292 (18)C5—H5A0.95
O2—C91.207 (2)C6—H6A0.95
N—C71.346 (2)C7—C81.507 (2)
N—C11.407 (2)C8—C91.511 (3)
N—H0A0.88C8—H8A0.99
C1—C21.385 (2)C8—H8B0.99
C1—C61.397 (2)C9—C101.496 (3)
C2—C31.387 (3)C10—H10A0.98
C2—H2A0.95C10—H10B0.98
C3—C41.388 (3)C10—H10C0.98
C7—N—C1126.91 (13)C1—C6—H6A120.2
C7—N—H0A116.5O1—C7—N122.94 (16)
C1—N—H0A116.5O1—C7—C8120.69 (16)
C2—C1—C6119.32 (16)N—C7—C8116.37 (13)
C2—C1—N117.45 (14)C7—C8—C9113.05 (15)
C6—C1—N123.22 (15)C7—C8—H8A109.0
C1—C2—C3120.60 (15)C9—C8—H8A109.0
C1—C2—H2A119.7C7—C8—H8B109.0
C3—C2—H2A119.7C9—C8—H8B109.0
C2—C3—C4120.01 (16)H8A—C8—H8B107.8
C2—C3—Cl1119.13 (13)O2—C9—C10121.89 (19)
C4—C3—Cl1120.86 (15)O2—C9—C8121.61 (18)
C5—C4—C3119.36 (17)C10—C9—C8116.50 (17)
C5—C4—Cl2119.13 (14)C9—C10—H10A109.5
C3—C4—Cl2121.51 (15)C9—C10—H10B109.5
C4—C5—C6121.12 (16)H10A—C10—H10B109.5
C4—C5—H5A119.4C9—C10—H10C109.5
C6—C5—H5A119.4H10A—C10—H10C109.5
C5—C6—C1119.57 (16)H10B—C10—H10C109.5
C5—C6—H6A120.2
C7—N—C1—C2152.83 (15)Cl2—C4—C5—C6178.76 (14)
C7—N—C1—C6−27.9 (2)C4—C5—C6—C10.9 (3)
C6—C1—C2—C31.5 (2)C2—C1—C6—C5−1.5 (2)
N—C1—C2—C3−179.14 (15)N—C1—C6—C5179.22 (15)
C1—C2—C3—C4−1.0 (3)C1—N—C7—O13.9 (3)
C1—C2—C3—Cl1178.40 (13)C1—N—C7—C8−175.10 (15)
C2—C3—C4—C50.3 (3)O1—C7—C8—C967.3 (2)
Cl1—C3—C4—C5−179.00 (14)N—C7—C8—C9−113.63 (17)
C2—C3—C4—Cl2−178.72 (14)C7—C8—C9—O215.9 (2)
Cl1—C3—C4—Cl21.9 (2)C7—C8—C9—C10−164.88 (15)
C3—C4—C5—C6−0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.881.952.824 (2)172
C6—H6A···O10.952.352.865 (2)113
C2—H2A···O2ii0.952.583.345 (2)138
C8—H8A···O2iii0.992.453.327 (2)147

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2974).

References

  • Becke, A. D. (1988). Phys. Rev. A38, 3098–100. [PubMed]
  • Becke, A. D. (1993). J. Chem. Phys.98, 5648–5652.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Eng.34, 1555–1573.
  • Brown, C. J. & Yadav, H. R. (1984). Acta Cryst. C40, 564–566.
  • Frisch, M. J., et al. (2004). GAUSSIAN03 Gaussian Inc., Wallingford, CT, USA.
  • Grissar, J. M., Schnettler, R. A. & Dage, R. C. (1982). US Patent 4329470.
  • Guo, M.-L. (2004). Acta Cryst. E60, o736–o737.
  • Hehre, W. J., Random, L., Schleyer, P. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory New York: Wiley.
  • Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev.B37, 785–789. [PubMed]
  • Lliopoulos, P., Fallon, G. D. & Murray, S. (1986). J. Chem. Soc. Dalton Trans. pp. 437–443.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Robin, M., Galy, J.-P., Kenz, A. & Pierrot, M. (2002). Acta Cryst. E58, o644–o645.
  • Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sundar, T. V., Parthasarathi, V., Walfort, B., Lang, H., Piplani, P. & Malik, R. (2005). Acta Cryst. E61, o2868–o2870.
  • Tai, X.-S., Liu, W.-Y., Liu, Y.-Z. & Li, Y.-Z. (2005). Acta Cryst. E61, o389–o390.
  • Whitaker, A. (1986). Acta Cryst. C42, 1566–1569.
  • Whitaker, A. (1987). Acta Cryst. C43, 2141–2144.
  • Whitaker, A. (1988). Acta Cryst. C44, 1587–1590.
  • Whitaker, A. & Walker, N. P. C. (1987). Acta Cryst. C43, 2137–2141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography