PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o129.
Published online 2009 December 12. doi:  10.1107/S1600536809052040
PMCID: PMC2980200

3,3,4,4,5,5-Hexa­fluoro-1,2-bis[4-(phenyl­ethyn­yl)phen­yl]­cyclo­pentene

Abstract

The title compound, C33H18F6, has a V-shaped conjugated subunit. The dihedral angles between the central cyclo­pentene ring and the directly attached benzene rings are 32.7 (2) and 53.7 (2)°, respectively. The fluoro substituents are disordered, the occupancies refined to a 0.675 (2):0.325 (2) ratio.

Related literature

The title compound was synthesised with the aim of simulating the characteristics of so-called left-handed materials on a mol­ecular scale. For a theoretical description of left-handed materials, see: Veselago (1968 [triangle]). For experimentally observed left-handed materials, see: Shelby et al. (2000 [triangle]); Chen et al. (2004 [triangle]); Zhou et al. (2006 [triangle]); Zhang et al. (2005 [triangle]); Liu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o129-scheme1.jpg

Experimental

Crystal data

  • C33H18F6
  • M r = 528.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o129-efi1.jpg
  • a = 16.350 (1) Å
  • b = 9.2893 (7) Å
  • c = 17.980 (1) Å
  • β = 103.654 (1)°
  • V = 2653.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.45 × 0.41 × 0.38 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.954, T max = 0.961
  • 22979 measured reflections
  • 6087 independent reflections
  • 3767 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.109
  • S = 1.01
  • 6087 reflections
  • 407 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052040/im2157sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052040/im2157Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Left-handed material is a kind of material that exhibits a negative refraction index. It has been explored theoretically by Veselago (1968). In 2000, a two-dimensional isotropic left-handed material was verified showing a negative refraction index (Shelby et al., 2000). From then on, the study of left-handed materials has gained increasing interest in physics-related fields. So far, most of the left-handed materials were realised via micro-processing technologies to integrate a metal into a S-shape (Chen et al., 2004) or H-shape (Zhou et al., 2006) micro-structural unit, therefore achieving a periodic arrangement. However, due to the technology limitations of nano-scale processing technology, most of the successful experimental verification are carried out in the microwave band (Zhang et al., 2005; Liu et al., 2007). Only if the left-handed material structural unit achieves a smaller size, a negative refraction index might be realised in the visible range. Using concepts of chemical synthesis technology to create structural features of left-handed materials at the molecular level might show potential to realise negative refraction in the visible range. The molecular model should exhibit an extended conjugated system providing electrons that are easily excited.

In this article, we tried to simulate structural features of left-handed material and designed a V-shaped conjugated organic molecular structure (Fig. 1). The title compound turns out to be a single-crystal, but whether it is really close to the structural features of left-handed materials or not and how to modify it to exhibit negative refraction, is still under investigation. The dihedral angle between the benzene ring C9—C14 and the adjacent benzene ring C1—C6 is 31.4 (1) °, the dihedral angle between the benzene ring C23—C28 and the adjacent benzene ring C15—C20 is 50.7 (2) °. C7—C8 (1.192 (2) Å) and C21—C22 (1.188 (2) Å) are acetylenic bonds and are therefore significantly shorter than the other carbon carbon bonds. The fluoro substituents at the cyclopentene ring are disordered with occupancies refined to a 0.675 (2):0.325 (2) ratio.

Experimental

Synthesis of the title compound was carried out in two steps:(1) 4-bromo-1-phenylethynylbenzene,was obtained in 72.6% yield by the reaction of phenylacetylene (12 g, 0.1 mol) and 1-Bromo-4-iodobenzene (28.29, 0.1 mol) in N(C2H5)3 (150 ml) solution catalyzed by CuI (0.3 g, 1.55 mmol), PPh3 (0.6 g, 2.45 mmol) and Pd(PPh3)Cl2(0.3 g, 0.42 mmol) at 336 K; (2) 1.6 ml of n-BuLi/hexane solution (2.5 mol/L, 4.0 mmol) was added slowly at 195 K under a nitrogen atmosphere to a stirred THF solution (40 ml) containing 4-bromo-1-phenylethynylbenzene (1.03 g, 4 mmol). After 30 min perfluorocyclopentene (0.27 ml, 2 mmol) was added and the mixture was stirred for 1 h at this temperature. The reaction mixture was extracted with CHCl3, evaporated in vacuo and purifed by column chromatography (hexane) to give the title compound. After recrystallization from CH2Cl2 light yellow-green crystals of the title compound were obtained in 23.4% yield. 1HNMR (400 MHz, CDCl3): δ 7.35(m, 10H), 7.51 (m, 8H)

Refinement

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The occupancies of the disordered components refined to a 0.675 (2):0.325 (2) ratio for F1:F1', F2:F2', F3:F3', F4:F4' F5:F5' and F6:F6'.

Figures

Fig. 1.
Molecular structure showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C33H18F6F(000) = 1080
Mr = 528.47Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6530 reflections
a = 16.350 (1) Åθ = 2.3–25.8°
b = 9.2893 (7) ŵ = 0.11 mm1
c = 17.980 (1) ÅT = 296 K
β = 103.654 (1)°Block, yellow
V = 2653.6 (4) Å30.45 × 0.41 × 0.38 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer6087 independent reflections
Radiation source: fine-focus sealed tube3767 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.954, Tmax = 0.961k = −12→12
22979 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0298P)2 + 0.8178P] where P = (Fo2 + 2Fc2)/3
6087 reflections(Δ/σ)max = 0.002
407 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C260.19961 (9)1.02109 (17)1.03064 (9)0.0496 (4)
C220.10730 (11)0.6218 (2)0.93186 (10)0.0611 (4)
C230.13842 (10)0.75808 (18)0.96494 (9)0.0557 (4)
C120.36369 (9)1.19273 (17)1.01487 (9)0.0512 (4)
C70.55877 (11)1.1281 (2)0.81141 (10)0.0687 (5)
C200.04809 (11)0.37578 (18)0.87084 (9)0.0557 (4)
C110.33280 (10)1.1354 (2)0.94246 (9)0.0628 (5)
H110.27611.11170.92680.075*
C90.46915 (10)1.1503 (2)0.91437 (10)0.0623 (5)
C210.08196 (11)0.5089 (2)0.90495 (10)0.0596 (4)
C270.24980 (10)0.89899 (19)1.04209 (10)0.0587 (4)
H270.30460.90511.07170.070*
C280.21994 (11)0.76934 (19)1.01039 (10)0.0618 (4)
H280.25440.68841.01930.074*
C80.52015 (11)1.1357 (2)0.85985 (10)0.0690 (5)
C240.08860 (10)0.88041 (19)0.95314 (10)0.0625 (5)
H240.03420.87480.92260.075*
C250.11797 (10)1.01009 (19)0.98572 (10)0.0594 (4)
H250.08321.09060.97770.071*
C60.60588 (10)1.1192 (2)0.75391 (10)0.0646 (5)
C140.50063 (11)1.2050 (2)0.98687 (11)0.0707 (5)
H140.55751.22801.00240.085*
C130.44917 (10)1.2260 (2)1.03648 (10)0.0647 (5)
H130.47181.26301.08510.078*
C15−0.02972 (12)0.3286 (2)0.87935 (11)0.0707 (5)
H15−0.05860.38210.90860.085*
C190.09035 (14)0.2938 (2)0.82795 (11)0.0771 (6)
H190.14310.32250.82260.093*
C100.38442 (11)1.1131 (2)0.89358 (10)0.0689 (5)
H100.36241.07250.84580.083*
C10.58778 (14)1.0158 (2)0.69804 (13)0.0854 (6)
H10.54400.95140.69720.102*
C16−0.06433 (14)0.2039 (3)0.84499 (13)0.0880 (6)
H16−0.11630.17270.85130.106*
C17−0.02255 (19)0.1254 (3)0.80152 (13)0.0992 (8)
H17−0.04660.04170.77760.119*
C40.71624 (17)1.2032 (4)0.69872 (17)0.1292 (11)
H40.76001.26730.69890.155*
C180.05436 (19)0.1691 (2)0.79302 (13)0.1001 (8)
H180.08270.11470.76360.120*
C20.63364 (18)1.0065 (3)0.64331 (15)0.1086 (8)
H20.62040.93640.60540.130*
C50.67010 (15)1.2145 (3)0.75389 (14)0.1059 (8)
H50.68251.28640.79080.127*
C30.69781 (18)1.0985 (4)0.64418 (16)0.1128 (9)
H30.72941.09040.60760.135*
C290.23397 (9)1.15683 (17)1.06773 (9)0.0498 (4)
C300.30656 (9)1.22316 (17)1.06528 (9)0.0497 (4)
C310.32336 (11)1.34507 (19)1.12133 (10)0.0607 (4)
C330.19144 (12)1.2310 (2)1.12173 (11)0.0687 (5)
C320.24253 (12)1.3637 (3)1.14835 (12)0.0749 (6)
F10.3864 (5)1.3132 (8)1.1850 (5)0.0784 (12)0.675 (12)
F20.3498 (3)1.4682 (7)1.0946 (4)0.0804 (11)0.675 (12)
F50.1123 (2)1.2516 (6)1.1010 (4)0.0953 (16)0.675 (12)
F30.1990 (2)1.4774 (4)1.1027 (3)0.0916 (12)0.675 (12)
F40.2516 (2)1.4078 (6)1.2183 (3)0.0956 (15)0.675 (12)
F60.2036 (5)1.1456 (4)1.1900 (3)0.0992 (13)0.675 (12)
F3'0.2714 (6)1.301 (2)1.2310 (3)0.139 (5)0.325 (12)
F4'0.2128 (5)1.4715 (12)1.1595 (14)0.148 (7)0.325 (12)
F2'0.3905 (11)1.328 (2)1.1726 (11)0.120 (6)0.325 (12)
F1'0.3278 (12)1.4677 (15)1.0822 (11)0.136 (5)0.325 (12)
F5'0.1528 (8)1.1542 (8)1.1592 (6)0.092 (3)0.325 (12)
F6'0.1151 (6)1.3026 (12)1.0670 (6)0.093 (3)0.325 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C260.0444 (8)0.0530 (9)0.0529 (9)−0.0063 (7)0.0145 (7)0.0000 (7)
C220.0645 (10)0.0591 (11)0.0634 (11)−0.0080 (9)0.0224 (9)−0.0028 (9)
C230.0567 (9)0.0552 (10)0.0585 (10)−0.0098 (8)0.0204 (8)−0.0026 (8)
C120.0444 (8)0.0555 (10)0.0520 (9)−0.0046 (7)0.0082 (7)0.0031 (8)
C70.0511 (9)0.0925 (14)0.0618 (11)0.0041 (9)0.0118 (9)0.0063 (10)
C200.0668 (10)0.0501 (9)0.0509 (9)−0.0051 (8)0.0153 (8)0.0017 (8)
C110.0453 (8)0.0886 (13)0.0534 (10)−0.0120 (9)0.0092 (7)−0.0005 (9)
C90.0498 (9)0.0783 (12)0.0593 (10)0.0031 (9)0.0143 (8)0.0063 (9)
C210.0644 (10)0.0567 (11)0.0602 (10)−0.0057 (9)0.0195 (8)−0.0014 (9)
C270.0468 (9)0.0619 (11)0.0641 (10)−0.0006 (8)0.0066 (8)−0.0017 (9)
C280.0605 (10)0.0540 (10)0.0703 (11)0.0046 (8)0.0142 (9)0.0003 (9)
C80.0511 (9)0.0932 (14)0.0623 (11)0.0046 (9)0.0124 (9)0.0069 (10)
C240.0453 (9)0.0628 (11)0.0758 (12)−0.0087 (8)0.0072 (8)−0.0064 (9)
C250.0458 (9)0.0555 (10)0.0746 (11)−0.0003 (8)0.0094 (8)−0.0026 (9)
C60.0513 (9)0.0838 (13)0.0604 (10)0.0053 (9)0.0163 (8)0.0092 (10)
C140.0422 (8)0.0988 (15)0.0702 (12)−0.0067 (9)0.0113 (8)−0.0038 (11)
C130.0472 (9)0.0844 (13)0.0604 (10)−0.0097 (9)0.0083 (8)−0.0096 (9)
C150.0685 (11)0.0666 (12)0.0791 (13)−0.0076 (10)0.0218 (10)−0.0046 (10)
C190.0946 (14)0.0682 (13)0.0806 (13)−0.0088 (11)0.0448 (12)−0.0060 (11)
C100.0575 (10)0.0963 (15)0.0522 (10)−0.0098 (10)0.0117 (8)−0.0062 (10)
C10.0902 (15)0.0793 (14)0.0971 (16)−0.0048 (12)0.0428 (13)−0.0035 (13)
C160.0857 (14)0.0859 (16)0.0893 (15)−0.0297 (12)0.0142 (12)−0.0059 (13)
C170.148 (2)0.0765 (15)0.0707 (14)−0.0385 (16)0.0214 (15)−0.0146 (12)
C40.105 (2)0.179 (3)0.117 (2)−0.048 (2)0.0534 (18)0.014 (2)
C180.159 (2)0.0739 (15)0.0832 (15)−0.0110 (15)0.0608 (16)−0.0200 (12)
C20.138 (2)0.0981 (18)0.1097 (19)0.0115 (17)0.0701 (18)−0.0086 (15)
C50.1026 (17)0.132 (2)0.0909 (16)−0.0434 (16)0.0391 (14)−0.0131 (15)
C30.106 (2)0.149 (3)0.103 (2)0.0215 (19)0.0633 (17)0.0258 (19)
C290.0447 (8)0.0531 (9)0.0512 (9)−0.0019 (7)0.0103 (7)0.0012 (7)
C300.0443 (8)0.0532 (9)0.0486 (9)−0.0021 (7)0.0048 (7)0.0020 (7)
C310.0520 (10)0.0613 (11)0.0656 (11)−0.0086 (9)0.0076 (9)−0.0058 (9)
C330.0594 (11)0.0736 (13)0.0803 (13)−0.0109 (10)0.0304 (10)−0.0131 (11)
C320.0639 (11)0.0832 (15)0.0783 (14)−0.0063 (11)0.0180 (10)−0.0299 (12)
F10.059 (2)0.105 (3)0.0622 (17)0.0063 (17)−0.0038 (14)−0.0136 (18)
F20.0774 (16)0.063 (2)0.107 (2)−0.0201 (11)0.0328 (14)−0.0124 (16)
F50.0460 (12)0.122 (3)0.121 (4)−0.0099 (17)0.0250 (19)−0.049 (3)
F30.0723 (13)0.0717 (16)0.131 (3)0.0201 (11)0.0252 (17)0.0108 (17)
F40.0840 (19)0.127 (4)0.0782 (18)−0.015 (2)0.0248 (13)−0.045 (2)
F60.133 (4)0.1022 (16)0.078 (2)−0.008 (2)0.057 (2)0.0078 (15)
F3'0.113 (4)0.232 (15)0.069 (3)−0.042 (7)0.016 (3)−0.021 (5)
F4'0.097 (5)0.093 (6)0.262 (19)−0.011 (4)0.059 (8)−0.091 (9)
F2'0.068 (5)0.180 (13)0.098 (9)−0.020 (6)−0.007 (5)−0.075 (9)
F1'0.204 (13)0.046 (4)0.164 (9)−0.014 (6)0.056 (9)0.008 (5)
F5'0.115 (6)0.092 (3)0.088 (5)−0.015 (4)0.061 (5)−0.010 (4)
F6'0.069 (3)0.110 (5)0.092 (5)0.035 (3)0.002 (3)−0.022 (4)

Geometric parameters (Å, °)

C26—C271.387 (2)C19—H190.9300
C26—C251.391 (2)C10—H100.9300
C26—C291.474 (2)C1—C21.373 (3)
C22—C211.188 (2)C1—H10.9300
C22—C231.439 (2)C16—C171.364 (3)
C23—C241.385 (2)C16—H160.9300
C23—C281.393 (2)C17—C181.364 (3)
C12—C111.387 (2)C17—H170.9300
C12—C131.394 (2)C4—C31.364 (4)
C12—C301.474 (2)C4—C51.385 (3)
C7—C81.192 (2)C4—H40.9300
C7—C61.430 (2)C18—H180.9300
C20—C191.380 (2)C2—C31.350 (4)
C20—C151.388 (2)C2—H20.9300
C20—C211.432 (2)C5—H50.9300
C11—C101.370 (2)C3—H30.9300
C11—H110.9300C29—C301.347 (2)
C9—C141.380 (2)C29—C331.490 (2)
C9—C101.390 (2)C30—C311.498 (2)
C9—C81.435 (2)C31—F2'1.266 (17)
C27—C281.372 (2)C31—F1'1.350 (15)
C27—H270.9300C31—F21.351 (7)
C28—H280.9300C31—F11.380 (8)
C24—C251.376 (2)C31—C321.522 (3)
C24—H240.9300C33—F5'1.251 (6)
C25—H250.9300C33—F51.273 (4)
C6—C11.370 (3)C33—F61.435 (5)
C6—C51.374 (3)C33—C321.503 (3)
C14—C131.377 (2)C33—F6'1.546 (8)
C14—H140.9300C32—F4'1.151 (7)
C13—H130.9300C32—F41.297 (4)
C15—C161.371 (3)C32—F31.421 (4)
C15—H150.9300C32—F3'1.563 (11)
C19—C181.381 (3)
C27—C26—C25118.64 (15)C3—C4—C5120.3 (3)
C27—C26—C29118.91 (14)C3—C4—H4119.9
C25—C26—C29122.44 (15)C5—C4—H4119.9
C21—C22—C23179.6 (2)C17—C18—C19120.2 (2)
C24—C23—C28118.35 (16)C17—C18—H18119.9
C24—C23—C22121.37 (15)C19—C18—H18119.9
C28—C23—C22120.28 (16)C3—C2—C1120.4 (3)
C11—C12—C13117.76 (15)C3—C2—H2119.8
C11—C12—C30120.50 (14)C1—C2—H2119.8
C13—C12—C30121.67 (14)C6—C5—C4119.8 (2)
C8—C7—C6179.4 (2)C6—C5—H5120.1
C19—C20—C15118.71 (17)C4—C5—H5120.1
C19—C20—C21121.46 (16)C2—C3—C4119.9 (2)
C15—C20—C21119.82 (16)C2—C3—H3120.0
C10—C11—C12121.15 (15)C4—C3—H3120.0
C10—C11—H11119.4C30—C29—C26128.39 (14)
C12—C11—H11119.4C30—C29—C33111.11 (15)
C14—C9—C10118.09 (16)C26—C29—C33120.24 (14)
C14—C9—C8122.16 (16)C29—C30—C12128.56 (15)
C10—C9—C8119.71 (16)C29—C30—C31110.29 (14)
C22—C21—C20177.5 (2)C12—C30—C31121.10 (14)
C28—C27—C26121.08 (15)F2'—C31—F1'109.8 (12)
C28—C27—H27119.5F2'—C31—F293.8 (10)
C26—C27—H27119.5F1'—C31—F1119.5 (9)
C27—C28—C23120.46 (16)F2—C31—F1103.8 (5)
C27—C28—H28119.8F2'—C31—C30112.8 (9)
C23—C28—H28119.8F1'—C31—C30108.2 (7)
C7—C8—C9176.0 (2)F2—C31—C30115.1 (3)
C25—C24—C23121.32 (15)F1—C31—C30112.2 (4)
C25—C24—H24119.3F2'—C31—C32116.8 (10)
C23—C24—H24119.3F1'—C31—C32103.1 (7)
C24—C25—C26120.14 (16)F2—C31—C32113.1 (3)
C24—C25—H25119.9F1—C31—C32107.1 (4)
C26—C25—H25119.9C30—C31—C32105.42 (14)
C1—C6—C5118.96 (19)F5'—C33—F568.6 (5)
C1—C6—C7120.71 (18)F5—C33—F6105.1 (2)
C5—C6—C7120.3 (2)F5'—C33—C29117.4 (3)
C13—C14—C9121.02 (16)F5—C33—C29118.5 (3)
C13—C14—H14119.5F6—C33—C29108.1 (2)
C9—C14—H14119.5F5'—C33—C32127.6 (5)
C14—C13—C12120.90 (16)F5—C33—C32114.8 (3)
C14—C13—H13119.5F6—C33—C32103.1 (3)
C12—C13—H13119.5C29—C33—C32106.09 (15)
C16—C15—C20120.58 (19)F5'—C33—F6'98.8 (4)
C16—C15—H15119.7F6—C33—F6'135.2 (4)
C20—C15—H15119.7C29—C33—F6'102.4 (4)
C20—C19—C18120.1 (2)C32—C33—F6'98.9 (4)
C20—C19—H19120.0F4'—C32—F460.9 (10)
C18—C19—H19120.0F4—C32—F3104.6 (3)
C11—C10—C9121.03 (16)F4'—C32—C33122.9 (4)
C11—C10—H10119.5F4—C32—C33119.7 (3)
C9—C10—H10119.5F3—C32—C33105.1 (3)
C6—C1—C2120.6 (2)F4'—C32—C31126.0 (6)
C6—C1—H1119.7F4—C32—C31115.8 (2)
C2—C1—H1119.7F3—C32—C31104.8 (2)
C17—C16—C15120.0 (2)C33—C32—C31105.32 (16)
C17—C16—H16120.0F4'—C32—F3'101.8 (7)
C15—C16—H16120.0F3—C32—F3'145.5 (6)
C16—C17—C18120.3 (2)C33—C32—F3'91.0 (6)
C16—C17—H17119.8C31—C32—F3'99.8 (5)
C18—C17—H17119.8
C13—C12—C11—C10−0.4 (3)C26—C29—C33—F5'30.1 (8)
C30—C12—C11—C10176.79 (17)C30—C29—C33—F5136.2 (4)
C25—C26—C27—C28−0.4 (2)C26—C29—C33—F5−49.2 (4)
C29—C26—C27—C28178.34 (15)C30—C29—C33—F6−104.6 (3)
C26—C27—C28—C230.8 (3)C26—C29—C33—F670.0 (3)
C24—C23—C28—C27−0.4 (3)C30—C29—C33—C325.4 (2)
C22—C23—C28—C27−179.93 (16)C26—C29—C33—C32−179.99 (16)
C28—C23—C24—C25−0.6 (3)C30—C29—C33—F6'108.6 (5)
C22—C23—C24—C25179.00 (16)C26—C29—C33—F6'−76.8 (5)
C23—C24—C25—C261.0 (3)F5'—C33—C32—F4'−71 (2)
C27—C26—C25—C24−0.5 (2)F5—C33—C32—F4'10.4 (18)
C29—C26—C25—C24−179.20 (15)F6—C33—C32—F4'−103.3 (17)
C10—C9—C14—C13−1.8 (3)C29—C33—C32—F4'143.2 (15)
C8—C9—C14—C13176.01 (19)F6'—C33—C32—F4'37.4 (19)
C9—C14—C13—C12−0.1 (3)F5'—C33—C32—F41.7 (11)
C11—C12—C13—C141.2 (3)F5—C33—C32—F483.1 (6)
C30—C12—C13—C14−176.01 (17)F6—C33—C32—F4−30.6 (5)
C19—C20—C15—C16−0.8 (3)C29—C33—C32—F4−144.1 (3)
C21—C20—C15—C16177.85 (18)F6'—C33—C32—F4110.1 (7)
C15—C20—C19—C181.4 (3)F5'—C33—C32—F3−115.4 (10)
C21—C20—C19—C18−177.18 (19)F5—C33—C32—F3−34.0 (5)
C12—C11—C10—C9−1.5 (3)F6—C33—C32—F3−147.7 (4)
C14—C9—C10—C112.5 (3)C29—C33—C32—F398.8 (3)
C8—C9—C10—C11−175.31 (19)F6'—C33—C32—F3−6.9 (6)
C5—C6—C1—C20.7 (3)F5'—C33—C32—C31134.3 (8)
C7—C6—C1—C2−179.4 (2)F5—C33—C32—C31−144.4 (4)
C20—C15—C16—C17−0.5 (3)F6—C33—C32—C31102.0 (3)
C15—C16—C17—C181.1 (4)C29—C33—C32—C31−11.5 (2)
C16—C17—C18—C19−0.5 (4)F6'—C33—C32—C31−117.3 (5)
C20—C19—C18—C17−0.8 (3)F5'—C33—C32—F3'33.8 (13)
C6—C1—C2—C30.6 (4)F5—C33—C32—F3'115.2 (9)
C1—C6—C5—C4−1.2 (4)F6—C33—C32—F3'1.5 (8)
C7—C6—C5—C4178.9 (2)C29—C33—C32—F3'−112.0 (6)
C3—C4—C5—C60.4 (5)F6'—C33—C32—F3'142.3 (10)
C1—C2—C3—C4−1.3 (4)F2'—C31—C32—F4'93.4 (19)
C5—C4—C3—C20.8 (5)F1'—C31—C32—F4'−27 (2)
C27—C26—C29—C3052.6 (2)F2—C31—C32—F4'−13.8 (15)
C25—C26—C29—C30−128.69 (18)F1—C31—C32—F4'99.9 (15)
C27—C26—C29—C33−120.95 (18)C30—C31—C32—F4'−140.4 (15)
C25—C26—C29—C3357.7 (2)F2'—C31—C32—F421.9 (11)
C26—C29—C30—C1211.8 (3)F1'—C31—C32—F4−98.6 (10)
C33—C29—C30—C12−174.18 (16)F2—C31—C32—F4−85.4 (5)
C26—C29—C30—C31−170.71 (15)F1—C31—C32—F428.3 (6)
C33—C29—C30—C313.3 (2)C30—C31—C32—F4148.0 (4)
C11—C12—C30—C2928.9 (3)F2'—C31—C32—F3136.5 (11)
C13—C12—C30—C29−153.99 (18)F1'—C31—C32—F316.0 (10)
C11—C12—C30—C31−148.36 (17)F2—C31—C32—F329.3 (4)
C13—C12—C30—C3128.7 (2)F1—C31—C32—F3143.0 (5)
C29—C30—C31—F2'118.0 (11)C30—C31—C32—F3−97.3 (3)
C12—C30—C31—F2'−64.3 (11)F2'—C31—C32—C33−112.9 (10)
C29—C30—C31—F1'−120.4 (8)F1'—C31—C32—C33126.7 (8)
C12—C30—C31—F1'57.4 (8)F2—C31—C32—C33139.9 (3)
C29—C30—C31—F2−136.0 (3)F1—C31—C32—C33−106.4 (4)
C12—C30—C31—F241.8 (3)C30—C31—C32—C3313.3 (2)
C29—C30—C31—F1105.7 (5)F2'—C31—C32—F3'−19.1 (13)
C12—C30—C31—F1−76.6 (5)F1'—C31—C32—F3'−139.6 (13)
C29—C30—C31—C32−10.6 (2)F2—C31—C32—F3'−126.4 (8)
C12—C30—C31—C32167.15 (16)F1—C31—C32—F3'−12.7 (8)
C30—C29—C33—F5'−144.5 (8)C30—C31—C32—F3'107.0 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2157).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, H. S., Ran, L. X., Huangfu, J. T., Zhang, X. M., Chen, K. S., Grzegorczyk, T. M. & Kong, J. A. (2004). Phys. Rev. E70, 057605. [PubMed]
  • Liu, R. P., Degiron, A., Mock, J. J. & Smith, D. R. (2007). Appl. Phys. Lett.90, 263504.
  • Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C. & Schultz, S. (2000). Appl. Phys. Lett.78, 489–491.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Veselago, V. G. (1968). Sov. Phys. Usp.10, 509–514.
  • Zhang, S., Fan, W. J., Panoiu, N. C., Malloy, K. J., Osgood, R. M. & Brueck, S. R. J. (2005). Phys. Rev. Lett.95, 137404. [PubMed]
  • Zhou, J. F., Koschny, T., Zhang, L., Tuttle, G. & Soukoulis, C. M. (2006). Appl. Phys. Lett.88, 221103.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography