PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o125.
Published online 2009 December 12. doi:  10.1107/S1600536809052301
PMCID: PMC2980199

Bis[2-(1,3-benzothia­zol-2-ylsulfan­yl)eth­yl] ether

Abstract

The complete molecule of title compound, C18H16N2OS4, is generated by crystallographic twofold symmetry, with the O atom lying on the rotation axis. The dihedral angle between the ring systems is 80.91 (2)°. In the crystal, adjacent mol­ecules are connected through π–π stacking inter­actions [centroid–centroid distance = 3.882 (2) Å], forming a three-dimensional network.

Related literature

For coordination polymers in supra­molecular chemistry and crystal engineering, see: Robinson & Zaworotko (1995 [triangle]); Yaghi & Li (1996 [triangle]); Fujita et al. (1995 [triangle]); Tong et al. (2000 [triangle]); Bu et al. (2003 [triangle]); Long et al. (2004 [triangle]); Massue et al. (2007 [triangle]); Zou et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o125-scheme1.jpg

Experimental

Crystal data

  • C18H16N2OS4
  • M r = 404.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o125-efi2.jpg
  • a = 24.617 (3) Å
  • b = 4.7085 (3) Å
  • c = 17.7866 (15) Å
  • β = 116.571 (13)°
  • V = 1843.9 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.81 mm−1
  • T = 293 K
  • 0.18 × 0.15 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.765, T max = 1.000
  • 2930 measured reflections
  • 1682 independent reflections
  • 1353 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.129
  • S = 1.05
  • 1682 reflections
  • 114 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052301/ng2684sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052301/ng2684Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the NSFC (Grant Nos. 20771048,20931003), the Project of Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the ‘Chen Guang’ project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.

supplementary crystallographic information

Comment

Ligands containing thioether and nitrogenous heterocyclic groups are well established sources for biologically active complexes. In addition, this kind of ligands may form one- or multi-dimensional supramolecular structures via the intermolecule interactions such as hydrogen-bond or π-π stacking, attracting intense attention in the field of supramolecular chemistry and crystal engineering (Robinson et al., 1995; Yaghi et al., 1996; Fujita et al., 1995; Tong et al., 2000).

Herein, we report the synthesis and structure of the title compound, namely bis[2-(benzothiazol-2-ylthio)ethyl]ether (Fig.1). As shown in Fig.2, a two-dimensional supramolecular network was formed by hydrogen bonds (Table 2) [Symmetry codes (i): x, -y + 1, z + 1/2] and S—S bonds of 3.575 (2) Å [Symmetry codes (ii): -x + 1/2, -y + 3/2, -z + 2], and there are also weak π-π stacking interactions between the phenyl rings and the thiazolyl rings of adjacent molecules with a centroid-centroid distances of 3.882 Å along b direction.

Experimental

Bis(2-chloroethyl)ether (0.02 mol, 2.86 g) was added dropwise to a hot mixture solution (353 K) of 2-mercaptobenzothiazole (0.04 mol, 6.69 g), KOH (0.04 mol, 2.24 g) in ethanol (100 ml), and the mixture was further stirred at 353 K for 15 h. After cooling, the precipitate was filtered, washed with ethanol and water, and recrystallized from ethanol to obtain white powder. Yield: 56% (Bu et al., 2003; Massue et al., 2007; Long et al., 2004). 1H NMR (CDCl3, 400 MHz): 3.56 (t, 4H), 3.89 (t, 4H), 7.25 (m, 2H), 7.39 (m, 2H), 7.70 (d, 2H), 7.82 (t, 2H). MS (ESI) m/z(%): 405.0 (M+1).

Refinement

The H atoms were placed at calculated positions in the riding model approximation (C—H 0.93 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

Figures

Fig. 1.
The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The three-dimensional structure by molecular packing, showing the hydrogen bonds as blue dashed lines [Symmetry codes: (i) x, -y + 1, z + 1/2], S—S bonds as green dashed lines and π-π stacking interactions as red dashed lines.

Crystal data

C18H16N2OS4F(000) = 840
Mr = 404.57Dx = 1.457 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 1595 reflections
a = 24.617 (3) Åθ = 2.8–68.1°
b = 4.7085 (3) ŵ = 4.81 mm1
c = 17.7866 (15) ÅT = 293 K
β = 116.571 (13)°Block, colourless
V = 1843.9 (3) Å30.18 × 0.15 × 0.07 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer1682 independent reflections
Radiation source: Enhance (Cu) X-ray Source1353 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 16.0855 pixels mm-1θmax = 68.1°, θmin = 2.8°
ω scansh = −29→25
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005)k = −5→3
Tmin = 0.765, Tmax = 1.000l = −21→19
2930 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0876P)2] where P = (Fo2 + 2Fc2)/3
1682 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.17154 (13)0.1689 (5)1.11310 (16)0.0505 (6)
C20.18584 (15)−0.0249 (6)1.17798 (17)0.0608 (7)
H20.2256−0.08601.20980.073*
C30.13924 (18)−0.1235 (7)1.1936 (2)0.0701 (8)
H30.1474−0.25681.23590.084*
C40.08011 (16)−0.0269 (8)1.1470 (2)0.0702 (8)
H40.0494−0.09541.15910.084*
C50.06625 (15)0.1676 (6)1.0837 (2)0.0614 (7)
H50.02660.23281.05340.074*
C60.11236 (12)0.2665 (6)1.06519 (15)0.0489 (6)
C70.15597 (12)0.4948 (6)0.99910 (14)0.0483 (6)
C80.09486 (13)0.8627 (6)0.86818 (16)0.0532 (6)
H8C0.07910.91990.90700.064*
H8B0.09951.03230.84060.064*
C90.05001 (13)0.6678 (5)0.80325 (17)0.0552 (6)
H9A0.06830.57690.77120.066*
H9B0.03700.52150.83000.066*
N10.10483 (10)0.4522 (5)1.00023 (13)0.0507 (5)
S10.21965 (3)0.32443 (16)1.07717 (4)0.0560 (2)
S20.16852 (3)0.69930 (17)0.92661 (4)0.0592 (3)
O10.00000.8363 (5)0.75000.0501 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0535 (14)0.0516 (13)0.0422 (12)−0.0026 (11)0.0176 (11)−0.0037 (10)
C20.0671 (18)0.0625 (16)0.0465 (14)0.0052 (13)0.0197 (13)0.0058 (12)
C30.094 (2)0.0659 (17)0.0546 (16)−0.0017 (16)0.0364 (17)0.0077 (13)
C40.081 (2)0.076 (2)0.0661 (18)−0.0114 (16)0.0442 (17)−0.0024 (15)
C50.0579 (16)0.0686 (18)0.0606 (17)−0.0045 (13)0.0290 (14)−0.0061 (13)
C60.0530 (15)0.0504 (13)0.0395 (12)−0.0021 (11)0.0171 (11)−0.0063 (10)
C70.0454 (13)0.0524 (13)0.0387 (11)−0.0023 (10)0.0112 (10)−0.0007 (10)
C80.0561 (15)0.0484 (13)0.0442 (13)0.0012 (11)0.0127 (11)0.0024 (10)
C90.0528 (15)0.0482 (13)0.0482 (13)0.0051 (11)0.0078 (12)−0.0003 (11)
N10.0460 (11)0.0559 (12)0.0427 (10)−0.0030 (9)0.0132 (9)−0.0023 (9)
S10.0438 (4)0.0679 (5)0.0484 (4)0.0033 (3)0.0136 (3)0.0090 (3)
S20.0450 (4)0.0713 (5)0.0519 (4)−0.0050 (3)0.0132 (3)0.0131 (3)
O10.0485 (14)0.0462 (13)0.0436 (12)0.0000.0099 (11)0.000

Geometric parameters (Å, °)

C1—C21.387 (4)C7—N11.284 (4)
C1—C61.396 (4)C7—S21.744 (3)
C1—S11.739 (3)C7—S11.755 (3)
C2—C31.376 (5)C8—C91.501 (4)
C2—H20.9300C8—S21.810 (3)
C3—C41.390 (5)C8—H8C0.9700
C3—H30.9300C8—H8B0.9700
C4—C51.372 (5)C9—O11.414 (3)
C4—H40.9300C9—H9A0.9700
C5—C61.395 (4)C9—H9B0.9700
C5—H50.9300O1—C9i1.414 (3)
C6—N11.394 (4)
C2—C1—C6122.1 (3)N1—C7—S1116.8 (2)
C2—C1—S1128.4 (2)S2—C7—S1116.50 (15)
C6—C1—S1109.5 (2)C9—C8—S2112.65 (19)
C3—C2—C1117.7 (3)C9—C8—H8C109.1
C3—C2—H2121.1S2—C8—H8C109.1
C1—C2—H2121.1C9—C8—H8B109.1
C2—C3—C4121.0 (3)S2—C8—H8B109.1
C2—C3—H3119.5H8C—C8—H8B107.8
C4—C3—H3119.5O1—C9—C8107.0 (2)
C5—C4—C3121.1 (3)O1—C9—H9A110.3
C5—C4—H4119.4C8—C9—H9A110.3
C3—C4—H4119.4O1—C9—H9B110.3
C4—C5—C6119.1 (3)C8—C9—H9B110.3
C4—C5—H5120.4H9A—C9—H9B108.6
C6—C5—H5120.4C7—N1—C6110.1 (2)
N1—C6—C5125.7 (2)C1—S1—C788.23 (13)
N1—C6—C1115.3 (2)C7—S2—C8101.30 (13)
C5—C6—C1118.9 (3)C9—O1—C9i111.7 (3)
N1—C7—S2126.7 (2)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1ii0.932.713.358 (3)128

Symmetry codes: (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2684).

References

  • Bu, X. H., Xie, Y. B., Li, J. R. & Zhang, R. H. (2003). Inorg. Chem.42, 7422–7430. [PubMed]
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  • Fujita, M., Kwon, Y. J., Sasaki, O., Yamaguchi, K. & Ogura, K. (1995). J. Am. Chem. Soc.117, 7287–7288.
  • Long, D. Q., Li, D. J. & Liu, C. Y. (2004). Chin. J. Synth. Chem.12, 586–588.
  • Massue, J., Bellec, N., Guerro, M., Bergamini, J. F., Hapiot, P. & Lorcy, D. (2007). J. Org. Chem.72, 4655–4662. [PubMed]
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Robinson, F. & Zaworotko, M. J. (1995). J. Chem. Soc. Chem. Commun.23, 2413–2414.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tong, M. L., Chen, X. M. & Ng, S. W. (2000). Inorg. Chem. Commun.3, 436–441.
  • Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc.118, 295–296.
  • Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des.4, 79–84.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography