PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m15.
Published online 2009 December 4. doi:  10.1107/S1600536809051721
PMCID: PMC2980197

catena-Poly[[(3-methyl­sulfanyl-1,2,4-thia­diazole-5-thiol­ato)sodium]di-μ-aqua-κ4 O:O]

Abstract

The crystal structure of the title compound, [Na(C3H3N2S3)(H2O)2]n, features polymeric chains made up of O(...)O edge-shared NaSN(H2O)4 units running along the b axis. The Na+ ion and all non-H atoms of the thia­diazole ligand lie on a mirror plane.

Related literature

For related structures, see: Guo (2004 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m15-scheme1.jpg

Experimental

Crystal data

  • [Na(C3H3N2S3)(H2O)2]
  • M r = 222.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m15-efi2.jpg
  • a = 7.5794 (8) Å
  • b = 6.9736 (6) Å
  • c = 8.6879 (12) Å
  • β = 102.027 (1)°
  • V = 449.13 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 298 K
  • 0.39 × 0.27 × 0.15 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.739, T max = 0.886
  • 2256 measured reflections
  • 862 independent reflections
  • 728 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.064
  • S = 1.07
  • 862 reflections
  • 64 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051721/ci2968sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051721/ci2968Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20741008) and the State Key Laboratory of Crystalline Materials, Liaocheng University, People’s Republic of China.

supplementary crystallographic information

Comment

In the title compound (Fig.1), each Na+ ion has a six-coordinate environment formed by a S atom and a N atom of the 3-methylsulfanyl-1,2,4-thiadiazole-5-thiolate ligand, and four bridging water O atoms O1, O1A, O1B and O1C. The adjacent NaSNO4 units share O1···O1A and O1B···O1C edges, producing chains running along the b axis (Fig. 2). Similar chains were found in the crystal structure of sodium carboxynitrobenzoate tetrahydrate (Guo, 2004). The Na—O [2.4493 (16) and 2.4736 (16) Å], Na—S [3.1271 (14) Å] and Na—N [2.467 (2) Å] distances are comparable to those observed in a related structure (Wang et al., 2007).

Experimental

To a solution of 3-methylmercapto-5-mercapto-1,2,4-thiadiazole (10 mmol) in 60 ml of doubly-distilled water, a solution of an equimolar amount (10 mmol) of sodium hydroxide in 40 ml of doubly-distilled water was added dropwise at room temperature. After vigorous stirring for 6 h, the resulting mixture was evaporated in vacuo to a volume of about 20 ml and filtered hot. The filtrate was then set aside for crystallization at room temperature. Two weeks later, colourless single crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms of the water molecules were initially located a difference Fourier map and later refined using a riding model with O-H = 0.85Å and Uiso(H) = 0.05 Å2. C-bound H atoms were positioned geometrically and treated as riding on their parent atoms with C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The coordination environment around the Na+ ion. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) -x, -y, 2-z; (B) x, 1/2-y, z; (C) -x, 1/2+y, 2-z].
Fig. 2.
Part of the polymeric chain parallel to the b axis. H atoms have been omitted for clarity.

Crystal data

[Na(C3H3N2S3)(H2O)2]F(000) = 228
Mr = 222.28Dx = 1.644 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1437 reflections
a = 7.5794 (8) Åθ = 2.4–27.9°
b = 6.9736 (6) ŵ = 0.83 mm1
c = 8.6879 (12) ÅT = 298 K
β = 102.027 (1)°Block, colourless
V = 449.13 (9) Å30.39 × 0.27 × 0.15 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer862 independent reflections
Radiation source: fine-focus sealed tube728 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→9
Tmin = 0.739, Tmax = 0.886k = −8→8
2256 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.027P)2 + 0.2249P] where P = (Fo2 + 2Fc2)/3
862 reflections(Δ/σ)max = 0.001
64 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Na10.07064 (15)0.25000.93636 (13)0.0400 (3)
N10.1651 (3)0.25000.4084 (3)0.0339 (5)
N20.1364 (3)0.25000.6700 (2)0.0291 (5)
O10.16585 (17)−0.0019 (2)1.13259 (15)0.0413 (4)
H1A0.16660.05021.22120.050*
H1B0.2701−0.04931.13740.050*
S10.37894 (9)0.25000.51077 (9)0.0386 (2)
S2−0.17326 (9)0.25000.46612 (9)0.0378 (2)
S30.46031 (10)0.25000.86933 (9)0.0448 (2)
C10.0626 (3)0.25000.5131 (3)0.0283 (6)
C20.3165 (3)0.25000.6910 (3)0.0310 (6)
C3−0.2220 (4)0.25000.2548 (3)0.0470 (8)
H3A−0.35030.25000.21630.071*
H3B−0.17090.13760.21750.071*0.50
H3C−0.17090.36240.21750.071*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0488 (7)0.0382 (7)0.0350 (6)0.0000.0134 (5)0.000
N10.0315 (12)0.0391 (14)0.0321 (13)0.0000.0085 (10)0.000
N20.0261 (11)0.0318 (12)0.0302 (12)0.0000.0074 (9)0.000
O10.0393 (8)0.0461 (9)0.0374 (8)0.0029 (6)0.0054 (6)−0.0041 (7)
S10.0274 (4)0.0514 (5)0.0394 (4)0.0000.0122 (3)0.000
S20.0256 (4)0.0444 (5)0.0423 (4)0.0000.0043 (3)0.000
S30.0319 (4)0.0626 (6)0.0364 (4)0.000−0.0009 (3)0.000
C10.0286 (13)0.0214 (13)0.0350 (15)0.0000.0067 (11)0.000
C20.0280 (13)0.0295 (15)0.0358 (15)0.0000.0070 (11)0.000
C30.0439 (17)0.0468 (19)0.0426 (18)0.000−0.0088 (14)0.000

Geometric parameters (Å, °)

Na1—O1i2.4493 (16)N2—C11.361 (3)
Na1—O12.4493 (16)O1—Na1ii2.4736 (16)
Na1—N22.467 (2)O1—H1A0.85
Na1—O1ii2.4736 (16)O1—H1B0.85
Na1—O1iii2.4736 (16)S1—C21.727 (3)
Na1—S33.1271 (14)S2—C11.749 (3)
Na1—Na1ii3.8756 (10)S2—C31.796 (3)
Na1—Na1iv3.8756 (10)S3—C21.698 (3)
N1—C11.314 (3)C3—H3A0.96
N1—S11.679 (2)C3—H3B0.96
N2—C21.340 (3)C3—H3C0.96
O1i—Na1—O191.62 (8)Na1ii—Na1—Na1iv128.23 (6)
O1i—Na1—N2124.42 (5)C1—N1—S1106.14 (18)
O1—Na1—N2124.42 (5)C2—N2—C1109.3 (2)
O1i—Na1—O1ii139.79 (5)C2—N2—Na1105.76 (16)
O1—Na1—O1ii76.14 (5)C1—N2—Na1144.92 (16)
N2—Na1—O1ii92.90 (6)Na1—O1—Na1ii103.86 (5)
O1i—Na1—O1iii76.14 (5)Na1—O1—H1A105.7
O1—Na1—O1iii139.79 (5)Na1ii—O1—H1A112.7
N2—Na1—O1iii92.90 (6)Na1—O1—H1B116.7
O1ii—Na1—O1iii88.79 (7)Na1ii—O1—H1B111.0
O1i—Na1—S388.68 (4)H1A—O1—H1B106.9
O1—Na1—S388.68 (4)N1—S1—C293.66 (12)
N2—Na1—S356.09 (5)C1—S2—C3102.79 (14)
O1ii—Na1—S3128.30 (4)C2—S3—Na173.65 (9)
O1iii—Na1—S3128.30 (4)N1—C1—N2121.0 (2)
O1i—Na1—Na1ii120.36 (6)N1—C1—S2124.2 (2)
O1—Na1—Na1ii38.29 (3)N2—C1—S2114.86 (18)
N2—Na1—Na1ii112.92 (3)N2—C2—S3124.5 (2)
O1ii—Na1—Na1ii37.85 (3)N2—C2—S1109.90 (19)
O1iii—Na1—Na1ii117.98 (6)S3—C2—S1125.60 (16)
S3—Na1—Na1ii112.39 (3)S2—C3—H3A109.5
O1i—Na1—Na1iv38.29 (3)S2—C3—H3B109.5
O1—Na1—Na1iv120.36 (6)H3A—C3—H3B109.5
N2—Na1—Na1iv112.92 (3)S2—C3—H3C109.5
O1ii—Na1—Na1iv117.98 (6)H3A—C3—H3C109.5
O1iii—Na1—Na1iv37.85 (4)H3B—C3—H3C109.5
S3—Na1—Na1iv112.39 (3)

Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y, −z+2; (iii) −x, y+1/2, −z+2; (iv) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2968).

References

  • Guo, M.-L. (2004). Acta Cryst. E60, m1684–m1685.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, X.-H., Hu, M.-C. & Yang, Z.-Q. (2007). Acta Cryst. E63, m1527–m1529.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography