PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o199.
Published online 2009 December 19. doi:  10.1107/S1600536809053860
PMCID: PMC2980196

6-Hydroxy­methyl-4-meth­oxy-2H-pyran-2-one (Opuntiol)

Abstract

The title compound, C7H8O4, isolated from Opuntia dillenii Haw (Cacta­ceae), is almost planar [maximum deviation of 0.027 (2) Å] except for the H atoms of the methylene and methyl groups. The crystal packing is stabilized by C—H(...)O and O—H(...)O inter­molecular hydrogen bonds, resulting in the formation of a three-dimensional network.

Related literature

For the use of the stem and fruit of Opuntia dillenii Haw (Cacta­ceae) in folk medicine, see: Chang et al. (2008 [triangle]). For phytochemical investigations of this plant, see: Qiu et al. (2002 [triangle]). For comparitive bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o199-scheme1.jpg

Experimental

Crystal data

  • C7H8O4
  • M r = 156.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o199-efi1.jpg
  • a = 4.0499 (5) Å
  • b = 18.101 (2) Å
  • c = 9.4743 (13) Å
  • β = 96.720 (7)°
  • V = 689.76 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 296 K
  • 0.34 × 0.25 × 0.19 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • 6516 measured reflections
  • 1268 independent reflections
  • 882 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.094
  • S = 1.02
  • 1268 reflections
  • 105 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053860/rk2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053860/rk2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission for providing financial support. Professor Islam Ullah Khan and Mr Shahzad Sharif are also gratefully acknowledged for providing single-crystal X-ray diffraction facilities at the Materials Chemistry Laboratory, GC University Lahore.

supplementary crystallographic information

Comment

Opuntia dillenii Haw (Cactaceae) usually grows in semi-desert regions in the tropics and subtropics. The stem and fruit of this plant are used in a folk medicine for reducing cholesterol levels, treatment of gastric ulcers, inflammation, diabetes and several other diseases (Chang et al., 2008). The phytochemical investigations on this plant have led to the isolation of various oxygenated constituents namely opuntiol, opuntioside-I, p-hydroxybenzoic acid, ethyl 3,4-dihydroxybenzoate, 3,4-dihydroxybenzoic acid, L-(-)-malic acid, (E)-ferulic acid, 4-ethoxy-6-hydroxymethyl-α-pyrone, 1-heptanecanol, vanillic acid, isorhamnetin, isorhamnetin-3-O-rutinoside, rutin, quercetin, 3,3'-dimethyl quercetin, 3-O-methyl quercetin, 3-O-methyl quercetin 7-O-β-D-glucopyranoside, kaempferol, kaempferol 7-O-β-D-glucopyranoside, kaempferol 7-O-β-D-glucopyranosyl-(1→4)- β-D-glucopyranoside, kaempferide, β-sitosterol, and manghaslin (Qiu et al., 2002). In the present study we first time report the crystal structure of opuntiol using single-crystal XRD.

In the title molecule, I, shown in Fig. 1, bond lengths and angles display normal values (Allen et al., 1987). Except the H atoms of the methlene and methyl groups, the molecule of I is almost planar, with maximum deviations of 0.027 (2)Å for O4, 0.023 (2)Å for C7, 0.020 (1)Å for O2 and -0.019 (2)Å for C2. For the methoxy and hydroxy methyl groups at the C3 and C5 positions in I, the C2–C3–O3–C7 and C4–C3–O3–C7 torsion angles are 0.9 (2)° and -178.94 (15)°, the O1–C5–C6–O4 and C4–C5–C6–O4 torsion angles are 177.77 (14)° and -2.9 (3)°, respectively.

In the crystal structure of I, there are non-classical C–H···O and classical O–H···O intermolecular hydrogen bonds (Table 1), forming a three-dimensional network (Figs. 2 and 3).

Experimental

Plant Material:Opuntia dillenii Haw (whole plant) was collected from the areas of Mar Balochan, Sangla Hill, Distt. Nankana, Pakistan, in April 2008, and identified by Muhammad Ajaib (Taxonomist), Department of Botany, Government College University, Lahore.

Extraction and isolation: The shade-dried ground whole plant (7 kg) of Opuntia dillenii Haw was exhaustively extracted with methanol (10L ×4) at room temperature. The extract was evaporated to yield the residue (1.1 kg), which was dissolved in distilled water (2.0 L) and partitioned with n-hexane (2L ×4), chloroform (2L × 4), ethyl acetate (2L × 4) and n-butanol (2L × 4) respectively. The chloroform soluble extract (157 g) was subjected to column chromatography using hexane with gradient of CHCl3 and followed by methanol up to 100%. Fifteen fractions (Fr. 1-15) were collected. The Fr. 14 was loaded on flash silica gel and eluted with MeOH : CHCl3 (2 : 98) to get purified crystals of opuntiol (84.7 mg).

Refinement

The H atom of the OH group was located in difference Fourier maps and were refined with a O–H distance restrained to 0.83 (1)Å, with displacement parameters fixed at 1.5 times Ueq of the parent O atom. The rest H atoms were placed geometrically, with C–H = 0.93-0.97 Å, and treated using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(parent atom).

Figures

Fig. 1.
Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The packing and hydrogen bonding of the title compound viewed down a axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Fig. 3.
The packing and hydrogen bonding of the title compound viewed down b axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C7H8O4F(000) = 328
Mr = 156.13Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1306 reflections
a = 4.0499 (5) Åθ = 2.3–23.4°
b = 18.101 (2) ŵ = 0.13 mm1
c = 9.4743 (13) ÅT = 296 K
β = 96.720 (7)°Needle, colourless
V = 689.76 (15) Å30.34 × 0.25 × 0.19 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer882 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.046
graphiteθmax = 25.5°, θmin = 2.4°
[var phi]– and ω–scansh = −4→4
6516 measured reflectionsk = −21→21
1268 independent reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0406P)2 + 0.1053P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1268 reflectionsΔρmax = 0.16 e Å3
105 parametersΔρmin = −0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (19)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6125 (3)0.16542 (6)0.30332 (12)0.0376 (4)
O20.9490 (3)0.11978 (7)0.48000 (14)0.0495 (5)
O30.3187 (3)−0.03651 (6)0.14748 (13)0.0392 (4)
O40.0594 (4)0.22405 (7)0.00555 (16)0.0558 (5)
C10.7497 (4)0.10447 (9)0.3778 (2)0.0362 (6)
C20.6491 (4)0.03392 (9)0.32627 (18)0.0336 (6)
C30.4283 (4)0.02721 (9)0.20778 (18)0.0303 (5)
C40.2914 (4)0.09149 (9)0.13544 (18)0.0334 (6)
C50.3878 (4)0.15778 (9)0.18521 (18)0.0325 (6)
C60.2807 (5)0.23160 (9)0.1300 (2)0.0413 (6)
C70.4484 (5)−0.10405 (10)0.2121 (2)0.0437 (7)
H1−0.003 (6)0.2662 (7)−0.022 (2)0.0840*
H20.73440−0.008100.373700.0400*
H40.137500.087100.055000.0400*
H6A0.173000.258000.201000.0500*
H6B0.473200.259900.110000.0500*
H7A0.68640−0.104100.216400.0660*
H7B0.35940−0.145300.156500.0660*
H7C0.38600−0.107800.306500.0660*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0434 (7)0.0266 (7)0.0405 (8)−0.0032 (5)−0.0045 (6)−0.0040 (6)
O20.0590 (9)0.0408 (8)0.0437 (8)−0.0065 (7)−0.0149 (7)−0.0057 (7)
O30.0503 (8)0.0224 (7)0.0420 (8)−0.0014 (6)−0.0073 (6)−0.0020 (6)
O40.0688 (10)0.0331 (8)0.0596 (10)0.0072 (7)−0.0169 (8)0.0056 (7)
C10.0385 (10)0.0342 (11)0.0347 (11)−0.0020 (8)−0.0002 (8)0.0000 (9)
C20.0385 (10)0.0256 (10)0.0355 (11)−0.0003 (8)−0.0008 (8)0.0019 (8)
C30.0333 (9)0.0238 (9)0.0335 (10)−0.0023 (7)0.0026 (8)−0.0030 (8)
C40.0371 (10)0.0312 (10)0.0305 (10)0.0010 (8)−0.0021 (8)0.0002 (8)
C50.0349 (10)0.0274 (10)0.0347 (10)−0.0006 (8)0.0022 (8)0.0007 (8)
C60.0459 (11)0.0267 (10)0.0500 (12)0.0014 (8)0.0000 (9)0.0015 (9)
C70.0548 (12)0.0240 (10)0.0501 (13)0.0006 (8)−0.0028 (10)0.0008 (9)

Geometric parameters (Å, °)

O1—C11.390 (2)C4—C51.331 (2)
O1—C51.364 (2)C5—C61.481 (2)
O2—C11.218 (2)C2—H20.9300
O3—C31.340 (2)C4—H40.9300
O3—C71.439 (2)C6—H6A0.9700
O4—C61.402 (2)C6—H6B0.9700
O4—H10.836 (14)C7—H7A0.9600
C1—C21.410 (2)C7—H7B0.9600
C2—C31.356 (2)C7—H7C0.9600
C3—C41.429 (2)
O1···O4i3.1840 (19)C2···H7C2.7800
O2···O4i2.8678 (18)C2···H7A2.7200
O2···C6i3.258 (2)C7···H22.5100
O3···C4ii3.415 (2)C7···H7Avii3.0900
O4···O2iii2.8678 (18)C7···H6Ax2.9900
O4···O1iii3.1840 (19)C7···H6Bx2.9800
O1···H1i2.47 (2)H1···H6Bvii2.5900
O2···H2iv2.6900H1···O1iii2.47 (2)
O2···H7Cv2.5700H1···O2iii2.073 (13)
O2···H1i2.073 (13)H1···C1iii2.676 (15)
O3···H4vi2.6700H2···C72.5100
O4···H7Bvi2.5800H2···H7A2.2800
O4···H42.5400H2···H7C2.3300
O4···H6Bvii2.7500H2···O2iv2.6900
C1···C4viii3.365 (2)H4···O42.5400
C1···C5viii3.470 (2)H4···O3vi2.6700
C2···C3viii3.473 (2)H6A···C7ix2.9900
C2···C4viii3.496 (2)H6B···O4viii2.7500
C3···C2vii3.473 (2)H6B···H1viii2.5900
C4···C2vii3.496 (2)H6B···C7ix2.9800
C4···C1vii3.365 (2)H6B···H7Cix2.5700
C4···C7ii3.580 (3)H7A···C22.7200
C4···O3ii3.415 (2)H7A···C7viii3.0900
C5···C1vii3.470 (2)H7A···H22.2800
C6···C7ix3.451 (3)H7B···O4vi2.5800
C6···O2iii3.258 (2)H7C···C22.7800
C7···C6x3.451 (3)H7C···H22.3300
C7···C4ii3.580 (3)H7C···H6Bx2.5700
C1···H1i2.676 (15)H7C···O2v2.5700
C1—O1—C5121.64 (13)C1—C2—H2120.00
C3—O3—C7117.64 (14)C3—C2—H2120.00
C6—O4—H1108.3 (14)C3—C4—H4121.00
O1—C1—O2114.29 (14)C5—C4—H4121.00
O1—C1—C2117.44 (15)O4—C6—H6A110.00
O2—C1—C2128.25 (16)O4—C6—H6B110.00
C1—C2—C3120.23 (15)C5—C6—H6A110.00
O3—C3—C2125.70 (15)C5—C6—H6B110.00
C2—C3—C4120.35 (15)H6A—C6—H6B108.00
O3—C3—C4113.95 (14)O3—C7—H7A109.00
C3—C4—C5118.87 (15)O3—C7—H7B109.00
O1—C5—C4121.46 (15)O3—C7—H7C109.00
C4—C5—C6128.79 (16)H7A—C7—H7B109.00
O1—C5—C6109.75 (14)H7A—C7—H7C109.00
O4—C6—C5109.94 (14)H7B—C7—H7C109.00
C5—O1—C1—O2179.27 (15)C1—C2—C3—O3178.79 (16)
C5—O1—C1—C20.3 (2)C1—C2—C3—C4−1.1 (3)
C1—O1—C5—C4−0.4 (2)O3—C3—C4—C5−178.94 (15)
C1—O1—C5—C6179.00 (15)C2—C3—C4—C50.9 (2)
C7—O3—C3—C2−0.9 (2)C3—C4—C5—O1−0.2 (2)
C7—O3—C3—C4178.94 (15)C3—C4—C5—C6−179.49 (17)
O1—C1—C2—C30.4 (2)O1—C5—C6—O4177.77 (14)
O2—C1—C2—C3−178.35 (18)C4—C5—C6—O4−2.9 (3)

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) x−1, −y+1/2, z−1/2; (iv) −x+2, −y, −z+1; (v) −x+1, −y, −z+1; (vi) −x, −y, −z; (vii) x−1, y, z; (viii) x+1, y, z; (ix) −x+1, y+1/2, −z+1/2; (x) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1···O1iii0.836 (14)2.47 (2)3.1840 (19)144.2 (17)
O4—H1···O2iii0.836 (14)2.073 (13)2.8678 (18)158.6 (18)
C7—H7B···O4vi0.962.583.494 (2)159
C7—H7C···O2v0.962.573.504 (2)164

Symmetry codes: (iii) x−1, −y+1/2, z−1/2; (vi) −x, −y, −z; (v) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2184).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chang, S. F., Hsieh, C. L. & Yen, G. C. (2008). Food Chem.106, 569–575.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Qiu, Y., Chen, Y., Pei, Y., Matsuda, H. & Yoshikawa, M. (2002). Chem. Pharm. Bull.50, 1507–1510. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography