PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m33.
Published online 2009 December 9. doi:  10.1107/S160053680905171X
PMCID: PMC2980195

Poly[hexa­aqua­bis(μ3-terephthalato)(μ2-terephthalato)diytterbium(III)]

Abstract

In the title two-dimensional coordination polymer, [Yb2(C8H4O4)3(H2O)6]n, the unique YbIII ion is eight-coordinated in a distorted dodeca­hedral coordination geometry by three water O atoms and five O atoms from carboxyl­ate groups belonging to four different terephthalate ligands. One of the terephthalate ligands is located around an inversion center. The coordination polymers are parallel to (121) and are connected by O—H(...)O hydrogen bonds into a three-dimensional framework.

Related literature

For the isostructural erbium(III) and lutetium(III) complexes, see: Daiguebonne et al. (2006 [triangle]); Xie et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m33-scheme1.jpg

Experimental

Crystal data

  • [Yb2(C8H4O4)3(H2O)6]
  • M r = 473.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m33-efi1.jpg
  • a = 7.8413 (7) Å
  • b = 9.5545 (8) Å
  • c = 10.6561 (9) Å
  • α = 68.827 (1)°
  • β = 71.024 (1)°
  • γ = 75.206 (1)°
  • V = 695.34 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.77 mm−1
  • T = 296 K
  • 0.21 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.251, T max = 0.316
  • 3564 measured reflections
  • 2444 independent reflections
  • 2323 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.048
  • S = 1.04
  • 2444 reflections
  • 217 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S160053680905171X/gk2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905171X/gk2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

Terephthalic acid as a dicarboxylate ligand may exhibit various coordination modes with transition metals or lanthanide ions that result in one-, two- or three-dimensional metal-organic frameworks (MOFs). As an extension of this research we report here the structure of the title two-dimensional coordination polymer of YbIII which is isostructural with LuIII and ErIII complexes (Daiguebonne et al., 2006; Xie et al., 2008) .

The asymmetric unit of the title compound (Fig. 1) contains one YbIII ion, one and a half of terephthalate ligand, and three coordinated water molecules. The YbIII ion is eight-coordinate with a dodecahedral coordination polyhedron made of three oxygen atoms from three coordination water molecules and five oxygen atoms from carboxylate groups of four different terephthalate ligands.

The coordination polymers are joined by O—H···O hydrogen bonds between coordinated water molecules and carboxylate groups of terephthalate ligands (Table 1).

Experimental

A mixture of AgNO3(0.057 g, 0.33 mmol), Yb2O3(0.116 g, 0.33 mmol), 2-pyrazinecarboxylic acid(0.165 g, 1.33 mmol), terephthalic acid (0.166 g, 1.0 mmol), H2O(7 ml), and HClO4(0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days and then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals were suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms of the water molecules were found from difference Fourier maps and refined with restraints imposed on the O-H and H···H distances [O—H = 0.82 (1) Å and H···H = 1.29 (1) Å] and displacement parameters set to 1.5Ueq(O).

Figures

Fig. 1.
ORTEP view of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 1 - x, -y, 3 - z.;(B) -x, 1 - y, 2 - z; (C) 1 - x, 1 - y, 1 - z.
Fig. 2.
A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

[Yb2(C8H4O4)3(H2O)6]Z = 2
Mr = 473.26F(000) = 452
Triclinic, P1Dx = 2.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8413 (7) ÅCell parameters from 2800 reflections
b = 9.5545 (8) Åθ = 2.6–27.8°
c = 10.6561 (9) ŵ = 6.77 mm1
α = 68.827 (1)°T = 296 K
β = 71.024 (1)°Block, colorless
γ = 75.206 (1)°0.21 × 0.18 × 0.17 mm
V = 695.34 (10) Å3

Data collection

Bruker APEXII area-detector diffractometer2444 independent reflections
Radiation source: fine-focus sealed tube2323 reflections with I > 2σ(I)
graphiteRint = 0.015
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 2.1°
[var phi] and ω scanh = −9→7
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −10→11
Tmin = 0.251, Tmax = 0.316l = −12→11
3564 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0237P)2 + 0.8814P] where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max = 0.003
217 parametersΔρmax = 0.82 e Å3
9 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Yb10.26626 (2)0.294523 (19)1.006579 (16)0.01940 (7)
C10.2794 (6)0.7548 (5)0.1682 (4)0.0244 (9)
C20.2113 (6)0.6900 (5)0.3233 (4)0.0231 (9)
C30.3017 (8)0.5574 (6)0.3942 (5)0.0546 (17)
H30.39990.50390.34440.066*
C40.2506 (8)0.5012 (6)0.5381 (5)0.0501 (15)
H40.31170.40940.58390.060*
C50.1094 (6)0.5813 (5)0.6133 (4)0.0238 (9)
C60.0601 (5)0.5283 (5)0.7702 (4)0.0210 (8)
C70.0173 (7)0.7138 (6)0.5423 (5)0.0465 (14)
H7−0.07910.76900.59170.056*
C80.0665 (7)0.7660 (6)0.3982 (5)0.0435 (13)
H80.00010.85400.35190.052*
C90.3969 (5)0.1538 (5)1.2422 (4)0.0221 (9)
C100.4506 (6)0.0733 (5)1.3751 (4)0.0243 (9)
C110.5442 (8)0.1424 (5)1.4211 (5)0.0406 (13)
H110.57540.23801.36780.049*
C120.4091 (8)−0.0693 (6)1.4544 (5)0.0411 (13)
H120.3486−0.11711.42340.049*
O10.1745 (4)0.8546 (4)0.1024 (3)0.0324 (7)
O20.4422 (4)0.7076 (4)0.1137 (3)0.0361 (8)
O3−0.0475 (4)0.6148 (4)0.8340 (3)0.0317 (7)
O40.1368 (5)0.3988 (3)0.8290 (3)0.0336 (7)
O50.4165 (4)0.2898 (3)1.1772 (3)0.0276 (7)
O60.3249 (4)0.0831 (3)1.1957 (3)0.0271 (7)
O1W0.3026 (5)0.5482 (4)0.9349 (4)0.0387 (8)
H1W0.221 (4)0.617 (4)0.914 (6)0.058*
H2W0.393 (4)0.589 (5)0.908 (6)0.058*
O2W0.0025 (5)0.1676 (4)1.0747 (4)0.0358 (8)
H3W−0.038 (7)0.168 (5)1.013 (4)0.054*
H4W0.030 (8)0.0778 (19)1.115 (5)0.054*
O3W0.3438 (5)0.0930 (3)0.9110 (3)0.0329 (7)
H5W0.451 (2)0.065 (5)0.877 (5)0.049*
H6W0.303 (5)0.014 (3)0.957 (5)0.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Yb10.02266 (11)0.02072 (11)0.01111 (10)−0.00012 (7)−0.00580 (7)−0.00153 (7)
C10.027 (2)0.026 (2)0.021 (2)−0.0095 (19)−0.0056 (18)−0.0052 (18)
C20.026 (2)0.028 (2)0.015 (2)−0.0081 (18)−0.0059 (16)−0.0031 (17)
C30.064 (4)0.049 (3)0.019 (2)0.029 (3)−0.001 (2)−0.006 (2)
C40.065 (4)0.039 (3)0.017 (2)0.027 (3)−0.008 (2)−0.002 (2)
C50.026 (2)0.023 (2)0.018 (2)−0.0040 (18)−0.0057 (17)−0.0023 (17)
C60.023 (2)0.022 (2)0.018 (2)−0.0043 (17)−0.0086 (17)−0.0035 (17)
C70.036 (3)0.053 (3)0.019 (2)0.024 (2)0.002 (2)−0.003 (2)
C80.034 (3)0.050 (3)0.018 (2)0.019 (2)−0.005 (2)0.003 (2)
C90.021 (2)0.027 (2)0.015 (2)−0.0004 (17)−0.0046 (16)−0.0045 (18)
C100.030 (2)0.023 (2)0.018 (2)0.0013 (18)−0.0117 (17)−0.0023 (17)
C110.070 (4)0.028 (3)0.029 (3)−0.019 (2)−0.028 (2)0.007 (2)
C120.066 (4)0.036 (3)0.033 (3)−0.020 (3)−0.034 (3)0.003 (2)
O10.0370 (18)0.0362 (18)0.0199 (15)−0.0057 (15)−0.0127 (14)0.0009 (14)
O20.0302 (18)0.046 (2)0.0226 (16)−0.0030 (15)0.0006 (13)−0.0083 (15)
O30.0330 (17)0.0383 (19)0.0170 (15)0.0030 (14)−0.0030 (13)−0.0094 (14)
O40.054 (2)0.0251 (17)0.0212 (16)0.0009 (15)−0.0202 (15)−0.0014 (13)
O50.0352 (17)0.0276 (17)0.0182 (15)−0.0074 (13)−0.0135 (13)0.0027 (13)
O60.0391 (18)0.0250 (16)0.0196 (15)−0.0059 (13)−0.0179 (13)0.0003 (13)
O1W0.0313 (18)0.0267 (18)0.052 (2)−0.0055 (14)−0.0105 (17)−0.0049 (16)
O2W0.0395 (19)0.0379 (19)0.0327 (19)−0.0096 (16)−0.0140 (15)−0.0074 (15)
O3W0.0388 (19)0.0277 (17)0.0296 (18)−0.0009 (14)−0.0077 (15)−0.0096 (14)

Geometric parameters (Å, °)

Yb1—O2i2.227 (3)C6—O41.261 (5)
Yb1—O42.231 (3)C7—C81.384 (6)
Yb1—O3ii2.233 (3)C7—H70.9300
Yb1—O1W2.327 (3)C8—H80.9300
Yb1—O3W2.352 (3)C9—O51.255 (5)
Yb1—O62.354 (3)C9—O61.280 (5)
Yb1—O2W2.438 (3)C9—C101.487 (5)
Yb1—O52.450 (3)C10—C121.376 (6)
Yb1—C92.773 (4)C10—C111.389 (6)
C1—O11.252 (5)C11—C12iii1.378 (6)
C1—O21.259 (5)C11—H110.9300
C1—C21.502 (5)C12—C11iii1.378 (6)
C2—C81.364 (6)C12—H120.9300
C2—C31.370 (6)O2—Yb1i2.227 (3)
C3—C41.385 (6)O3—Yb1ii2.233 (3)
C3—H30.9300O1W—H1W0.81 (4)
C4—C51.373 (6)O1W—H2W0.82 (4)
C4—H40.9300O2W—H3W0.82 (5)
C5—C71.376 (6)O2W—H4W0.82 (3)
C5—C61.507 (5)O3W—H5W0.82 (3)
C6—O31.238 (5)O3W—H6W0.82 (4)
O2i—Yb1—O498.80 (12)C5—C4—C3119.9 (4)
O2i—Yb1—O3ii144.25 (12)C5—C4—H4120.1
O4—Yb1—O3ii98.76 (12)C3—C4—H4120.1
O2i—Yb1—O1W76.69 (12)C4—C5—C7118.6 (4)
O4—Yb1—O1W77.10 (12)C4—C5—C6120.8 (4)
O3ii—Yb1—O1W77.26 (12)C7—C5—C6120.5 (4)
O2i—Yb1—O3W73.41 (12)O3—C6—O4123.7 (4)
O4—Yb1—O3W79.48 (11)O3—C6—C5118.9 (4)
O3ii—Yb1—O3W140.62 (12)O4—C6—C5117.3 (4)
O1W—Yb1—O3W138.30 (12)C5—C7—C8120.8 (4)
O2i—Yb1—O694.87 (11)C5—C7—H7119.6
O4—Yb1—O6148.87 (11)C8—C7—H7119.6
O3ii—Yb1—O685.72 (11)C2—C8—C7120.8 (4)
O1W—Yb1—O6133.53 (11)C2—C8—H8119.6
O3W—Yb1—O677.85 (11)C7—C8—H8119.6
O2i—Yb1—O2W143.67 (12)O5—C9—O6119.7 (4)
O4—Yb1—O2W74.76 (12)O5—C9—C10121.4 (4)
O3ii—Yb1—O2W71.38 (12)O6—C9—C10118.8 (4)
O1W—Yb1—O2W133.46 (12)O5—C9—Yb162.0 (2)
O3W—Yb1—O2W70.26 (12)O6—C9—Yb157.76 (19)
O6—Yb1—O2W77.66 (11)C10—C9—Yb1174.7 (3)
O2i—Yb1—O577.29 (11)C12—C10—C11118.9 (4)
O4—Yb1—O5156.47 (11)C12—C10—C9121.2 (4)
O3ii—Yb1—O574.22 (11)C11—C10—C9119.9 (4)
O1W—Yb1—O579.44 (11)C12iii—C11—C10120.0 (4)
O3W—Yb1—O5120.37 (11)C12iii—C11—H11120.0
O6—Yb1—O554.27 (9)C10—C11—H11120.0
O2W—Yb1—O5121.90 (10)C10—C12—C11iii121.1 (4)
O2i—Yb1—C986.23 (11)C10—C12—H12119.5
O4—Yb1—C9174.57 (12)C11iii—C12—H12119.5
O3ii—Yb1—C978.02 (11)C1—O2—Yb1i161.1 (3)
O1W—Yb1—C9106.19 (13)C6—O3—Yb1ii162.9 (3)
O3W—Yb1—C9100.18 (12)C6—O4—Yb1137.1 (3)
O6—Yb1—C927.39 (11)C9—O5—Yb191.1 (2)
O2W—Yb1—C999.99 (11)C9—O6—Yb194.8 (2)
O5—Yb1—C926.89 (11)Yb1—O1W—H1W121 (3)
O1—C1—O2124.3 (4)Yb1—O1W—H2W132 (3)
O1—C1—C2118.7 (4)H1W—O1W—H2W105 (5)
O2—C1—C2116.9 (4)Yb1—O2W—H3W118 (4)
C8—C2—C3118.3 (4)Yb1—O2W—H4W109 (4)
C8—C2—C1121.2 (4)H3W—O2W—H4W105 (5)
C3—C2—C1120.3 (4)Yb1—O3W—H5W119 (4)
C2—C3—C4121.6 (5)Yb1—O3W—H6W119 (4)
C2—C3—H3119.2H5W—O3W—H6W104 (4)
C4—C3—H3119.2

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) −x+1, −y, −z+3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2Wii0.81 (4)2.35 (3)3.123 (5)158 (6)
O1W—H1W···O30.81 (4)2.52 (4)3.104 (5)130 (4)
O1W—H2W···O5iv0.82 (4)1.91 (5)2.714 (4)170 (5)
O2W—H3W···O1v0.82 (5)1.97 (5)2.771 (4)167 (5)
O2W—H4W···O1vi0.82 (3)2.17 (3)2.900 (5)149 (5)
O3W—H5W···O6vii0.82 (3)2.08 (2)2.846 (4)156 (4)
O3W—H6W···O1vi0.82 (4)1.95 (4)2.746 (4)165 (5)

Symmetry codes: (ii) −x, −y+1, −z+2; (iv) −x+1, −y+1, −z+2; (v) −x, −y+1, −z+1; (vi) x, y−1, z+1; (vii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2241).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Daiguebonne, C., Kerbellec, N., Bernot, K., Gerault, Y., Deluzet, A. & Guillou, O. (2006). Inorg. Chem.45, 5399–5406. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xie, S.-L., Xie, B.-Q., Tang, X.-Y., Wang, N. & Yue, S.-T. (2008). Z. Anorg. Allg. Chem.634, 842–844.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography