PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o177.
Published online 2009 December 16. doi:  10.1107/S1600536809053355
PMCID: PMC2980192

N-(4-Bromo­phen­yl)-2-(2-thien­yl)acetamide

Abstract

The thienyl ring in the title compound, C12H10BrNOS, is disordered over two diagonally opposite positions, the major component having a site-occupancy factor of 0.660 (5). The mol­ecule is twisted as evidenced by the dihedral angles of 70.0 (4) and 70.5 (6)° formed between the benzene ring and the two orientations of the disordered thio­phene ring. Linear supra­molecular chains along the a axis are found in the crystal structure through the agency of N—H(...)O hydrogen bonding.

Related literature

For background to the various applications of 2-substituted thio­phenes, see: Campaigne (1984 [triangle]); Kleemann et al. (2006 [triangle]). For recent biological studies on 2-substituted thio­phenes, see: Lourenço et al. (2007 [triangle]). For the structure of the N-(2,6-dimethyl­phen­yl) derivative, see: Ferreira et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o177-scheme1.jpg

Experimental

Crystal data

  • C12H10BrNOS
  • M r = 296.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o177-efi1.jpg
  • a = 4.7517 (2) Å
  • b = 10.7283 (3) Å
  • c = 11.7964 (3) Å
  • α = 76.419 (2)°
  • β = 88.437 (2)°
  • γ = 84.479 (2)°
  • V = 581.82 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.69 mm−1
  • T = 120 K
  • 0.09 × 0.06 × 0.02 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.845, T max = 1.000
  • 9757 measured reflections
  • 2045 independent reflections
  • 1847 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.115
  • S = 0.98
  • 2045 reflections
  • 161 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053355/hg2617sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053355/hg2617Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The various uses, for example, as dyestuffs, flavour agents, drugs, and inhibitors, have been well documented for 2-substituted thiophenes related to the title compound (Campaigne, 1984). Thiophenes are present in many natural and synthetic products that have a wide range of pharmacological activities (Kleemann et al., 2006). The in vitro antimycobacterial activities of a series of N-(aryl)-2-thiophen-2-ylacetamide derivatives were recently investigated and encouraging activities were detected for some of these (Lourenço et al., 2007). The search for new drugs having antibacterial activity against Mycobacterium tuberculosis is a vital task due to the increase of multi-drug resistant tuberculosis (MDR-TB) and AIDS cases worldwide, and the increasing resistance to the currently used main line drugs such as isoniazid and rifampin (http://www.who.int/tdr/diseases/tb/default.htm). Recently, we reported the structure of N-(2,6-dimethylphenyl)-2-(thiophen-2-yl)acetamide (Ferreira et al., 2009) and as a continuation of these studies, the title thiophene derivative, (I), is described.

The molecular structure of (I), Fig. 1, is twisted as seen in the values of the C6–N1–C7–C8 and S1–C1–C5–C6 torsion angles of 35.0 (5) and 88.4 (4) °, respectively; the S1'–C1–C5–C6 torsion angle for the minor component of the disordered thiophene ring is -89.9 (5) °. The dihedral angle formed between the thiophene and benzene rings is 70.0 (4) °; the equivalent angle involving the minor component of the thiophene ring is 70.5 (6) °. The anti-conformation of the amide group allows for the formation of linear supramolecular chains along the a axis via N–H···O hydrogen bonding, Fig. 2 and Table 1.

Experimental

A solution of 4-bromoaniline (2 mmol) and 2-thienylacetyl chloride (2 mmol) in tetrahydrofuran (20 ml) was stirred for 2 h at room temperature, water (30 ml) added and the mixture was extracted with ethyl acetate (2 x 20 ml). The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over MgSO4, filtered, and rotary evaporated to give the crude product, (yield 96%), which was recrystallized from EtOH; m.pt.: 411–412 K. CG/MS: m/z [M]+.: 297. 1H NMR [500.00 MHz, DMSO-d6] δ: 10.30 (1H, s, NH), 7.6 (d, 2H, J = 9.0 Hz), 7.48 (d, 2H, J = 9.0 Hz), 7.38, (dd, 1H, J = 4.5 and 2.0 Hz), 6.98–6.96 (m, 2H), 3.87 (s, 2H, CH2CO) p.p.m.. 13C NMR (125.0 MHz, DMSO-d6) δ: 168.1, 138.3, 136.8, 131.5, 126.6, 126.3, 125.0, 121.3, 114.8, 37.4 p.p.m.. IR (KBr, cm-1) ν: 1660 (CO).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N–H atom was located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N). The thienyl ring was disordered with two diagonally opposed positions resolved for the S1 and C4 atoms (the anisotropic displacement parameters for the two components of the C4 atom were constrained to be equal). The major component had a site occupancy factor = 0.660 (5).

Figures

Fig. 1.
Molecular structure (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered thienyl ring is shown for reasons of clarity.
Fig. 2.
Supramolecular chain in (I) aligned along the a axis and mediated by N–H···O hydrogen bonds (blue dashed lines). Colour code: Br, olive; S, yellow; O, red; N, blue; C, grey; and H, green.

Crystal data

C12H10BrNOSZ = 2
Mr = 296.18F(000) = 296
Triclinic, P1Dx = 1.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7517 (2) ÅCell parameters from 2592 reflections
b = 10.7283 (3) Åθ = 2.9–27.5°
c = 11.7964 (3) ŵ = 3.69 mm1
α = 76.419 (2)°T = 120 K
β = 88.437 (2)°Block, pale-brown
γ = 84.479 (2)°0.09 × 0.06 × 0.02 mm
V = 581.82 (3) Å3

Data collection

Enraf–Nonius KappaCCD area-detector diffractometer2045 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1847 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 2.9°
[var phi] and ω scansh = −5→5
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −12→12
Tmin = 0.845, Tmax = 1.000l = −14→14
9757 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2045 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br0.27885 (7)−0.23040 (3)0.97460 (3)0.03386 (19)
O10.0821 (5)0.2338 (2)0.4702 (2)0.0338 (6)
N10.5204 (5)0.1924 (3)0.5506 (2)0.0237 (6)
H1N0.696 (3)0.211 (3)0.540 (3)0.028*
S10.0537 (8)0.5801 (3)0.3373 (3)0.0278 (6)0.660 (5)
C10.2232 (6)0.4487 (3)0.3020 (3)0.0249 (7)0.660 (5)
C2−0.1461 (8)0.6162 (4)0.2202 (3)0.0361 (8)0.660 (5)
H2−0.28060.68940.20400.043*0.660 (5)
C3−0.1056 (7)0.5346 (4)0.1488 (3)0.0318 (8)0.660 (5)
H3−0.20060.54200.07740.038*0.660 (5)
C40.108 (4)0.4342 (19)0.2003 (15)0.035 (4)0.660 (5)
H40.16440.36330.16680.042*0.660 (5)
S1'0.1360 (17)0.4123 (9)0.1850 (6)0.0245 (14)0.340 (5)
C1'0.2232 (6)0.4487 (3)0.3020 (3)0.0249 (7)0.340 (5)
C2'−0.1461 (8)0.6162 (4)0.2202 (3)0.0361 (8)0.340 (5)
H2'−0.27720.69040.21080.043*0.340 (5)
C3'−0.1056 (7)0.5346 (4)0.1488 (3)0.0318 (8)0.340 (5)
H3'−0.21340.54740.07970.038*0.340 (5)
C4'0.072 (7)0.561 (3)0.323 (3)0.035 (4)0.340 (5)
H4'0.09770.59800.38790.042*0.340 (5)
C50.4454 (7)0.3645 (4)0.3784 (3)0.0351 (8)
H5A0.54850.41830.41760.042*
H5B0.58280.32560.32900.042*
C60.3296 (6)0.2578 (3)0.4702 (3)0.0251 (7)
C70.4675 (6)0.0909 (3)0.6462 (3)0.0227 (7)
C80.2767 (7)0.0013 (3)0.6398 (3)0.0251 (7)
H80.18060.00710.56890.030*
C90.2278 (7)−0.0953 (3)0.7360 (3)0.0266 (7)
H90.0995−0.15660.73150.032*
C100.3667 (7)−0.1026 (3)0.8397 (3)0.0252 (7)
C110.5612 (7)−0.0172 (3)0.8476 (3)0.0279 (7)
H110.6607−0.02540.91810.033*
C120.6090 (7)0.0808 (3)0.7505 (3)0.0255 (7)
H120.73890.14140.75530.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0441 (3)0.0281 (3)0.0269 (3)−0.00963 (17)0.00026 (16)0.00104 (16)
O10.0170 (11)0.0346 (14)0.0425 (15)−0.0075 (10)−0.0019 (10)0.0076 (11)
N10.0165 (12)0.0273 (15)0.0256 (13)−0.0067 (11)0.0018 (11)−0.0008 (11)
S10.0324 (10)0.0221 (11)0.0298 (12)−0.0051 (8)0.0006 (8)−0.0068 (9)
C10.0191 (15)0.0207 (17)0.0320 (18)−0.0039 (12)0.0043 (13)−0.0002 (13)
C20.0328 (18)0.0267 (19)0.042 (2)−0.0012 (15)0.0071 (15)0.0040 (15)
C30.0289 (17)0.039 (2)0.0236 (17)−0.0084 (15)−0.0003 (13)0.0034 (15)
C40.037 (5)0.038 (7)0.036 (6)−0.007 (4)0.015 (3)−0.022 (4)
S1'0.027 (2)0.029 (3)0.019 (2)−0.0057 (17)0.0037 (17)−0.007 (2)
C1'0.0191 (15)0.0207 (17)0.0320 (18)−0.0039 (12)0.0043 (13)−0.0002 (13)
C2'0.0328 (18)0.0267 (19)0.042 (2)−0.0012 (15)0.0071 (15)0.0040 (15)
C3'0.0289 (17)0.039 (2)0.0236 (17)−0.0084 (15)−0.0003 (13)0.0034 (15)
C4'0.037 (5)0.038 (7)0.036 (6)−0.007 (4)0.015 (3)−0.022 (4)
C50.0228 (16)0.034 (2)0.041 (2)−0.0067 (14)0.0030 (14)0.0078 (16)
C60.0191 (15)0.0229 (18)0.0329 (19)−0.0039 (13)0.0040 (13)−0.0053 (15)
C70.0141 (13)0.0267 (17)0.0264 (16)−0.0020 (12)0.0051 (12)−0.0050 (13)
C80.0278 (16)0.0224 (17)0.0257 (16)−0.0059 (13)−0.0032 (13)−0.0048 (13)
C90.0254 (16)0.0235 (17)0.0317 (17)−0.0058 (13)0.0017 (13)−0.0070 (14)
C100.0265 (16)0.0225 (17)0.0245 (16)−0.0022 (13)0.0025 (13)−0.0017 (13)
C110.0263 (16)0.0309 (19)0.0274 (17)−0.0025 (14)−0.0008 (13)−0.0086 (14)
C120.0185 (14)0.0278 (18)0.0318 (17)−0.0061 (12)0.0001 (12)−0.0087 (14)

Geometric parameters (Å, °)

Br—C101.907 (3)C2'—C3'1.348 (5)
O1—C61.228 (4)C2'—C4'1.59 (3)
N1—C61.352 (4)C2'—H2'0.9500
N1—C71.407 (4)C3'—H3'0.9500
N1—H1N0.875 (10)C4'—H4'0.9500
S1—C21.647 (5)C5—C61.514 (5)
S1—C11.687 (4)C5—H5A0.9900
C1—C41.381 (17)C5—H5B0.9900
C1—C51.493 (5)C7—C121.396 (4)
C2—C31.348 (5)C7—C81.399 (4)
C2—H20.9500C8—C91.377 (5)
C3—C41.439 (19)C8—H80.9500
C3—H30.9500C9—C101.388 (5)
C4—H40.9500C9—H90.9500
S1'—C1'1.594 (8)C10—C111.382 (5)
S1'—C3'1.641 (9)C11—C121.391 (5)
C1'—C4'1.42 (3)C11—H110.9500
C1'—C51.493 (5)C12—H120.9500
C6—N1—C7126.1 (3)C1—C5—C6113.6 (3)
C6—N1—H1n117 (2)C1'—C5—H5A108.8
C7—N1—H1n117 (2)C1—C5—H5A108.8
C2—S1—C193.6 (2)C6—C5—H5A108.8
C4—C1—C5129.6 (8)C1'—C5—H5B108.8
C4—C1—S1108.3 (8)C1—C5—H5B108.8
C5—C1—S1122.0 (3)C6—C5—H5B108.8
C3—C2—S1115.4 (3)H5A—C5—H5B107.7
C3—C2—H2122.3O1—C6—N1123.6 (3)
S1—C2—H2122.3O1—C6—C5122.0 (3)
C2—C3—C4107.7 (7)N1—C6—C5114.5 (3)
C2—C3—H3126.2C12—C7—C8119.5 (3)
C4—C3—H3126.2C12—C7—N1118.5 (3)
C1—C4—C3114.9 (11)C8—C7—N1122.1 (3)
C1—C4—H4122.6C9—C8—C7120.1 (3)
C3—C4—H4122.6C9—C8—H8119.9
C1'—S1'—C3'94.5 (5)C7—C8—H8119.9
C4'—C1'—C5126.1 (14)C10—C9—C8119.7 (3)
C4'—C1'—S1'114.4 (14)C10—C9—H9120.2
C5—C1'—S1'119.4 (4)C8—C9—H9120.2
C3'—C2'—C4'105.2 (11)C11—C10—C9121.3 (3)
C3'—C2'—H2'127.4C11—C10—Br119.6 (2)
C4'—C2'—H2'127.4C9—C10—Br119.1 (2)
C2'—C3'—S1'117.9 (4)C10—C11—C12118.9 (3)
C2'—C3'—H3'121.1C10—C11—H11120.5
S1'—C3'—H3'121.1C12—C11—H11120.5
C1'—C4'—C2'108.0 (19)C7—C12—C11120.4 (3)
C1'—C4'—H4'126.0C7—C12—H12119.8
C2'—C4'—H4'126.0C11—C12—H12119.8
C1'—C5—C6113.6 (3)
C2—S1—C1—C4−2.5 (10)C7—N1—C6—O1−1.5 (5)
C2—S1—C1—C5−179.0 (3)C7—N1—C6—C5178.7 (3)
C1—S1—C2—C30.8 (4)C1'—C5—C6—O19.4 (5)
S1—C2—C3—C41.0 (9)C1—C5—C6—O19.4 (5)
C5—C1—C4—C3179.8 (7)C1'—C5—C6—N1−170.8 (3)
S1—C1—C4—C33.6 (17)C1—C5—C6—N1−170.8 (3)
C2—C3—C4—C1−3.0 (16)C6—N1—C7—C12−144.4 (3)
C3'—S1'—C1'—C4'−0.6 (19)C6—N1—C7—C835.0 (5)
C3'—S1'—C1'—C5178.7 (3)C12—C7—C8—C90.5 (5)
C4'—C2'—C3'—S1'0.1 (13)N1—C7—C8—C9−178.9 (3)
C1'—S1'—C3'—C2'0.3 (6)C7—C8—C9—C100.6 (5)
C5—C1'—C4'—C2'−178.6 (8)C8—C9—C10—C11−2.2 (5)
S1'—C1'—C4'—C2'1(3)C8—C9—C10—Br176.1 (2)
C3'—C2'—C4'—C1'0(2)C9—C10—C11—C122.6 (5)
C4'—C1'—C5—C689.3 (18)Br—C10—C11—C12−175.7 (2)
S1'—C1'—C5—C6−89.9 (5)C8—C7—C12—C110.0 (5)
C4—C1—C5—C6−87.3 (12)N1—C7—C12—C11179.4 (3)
S1—C1—C5—C688.4 (4)C10—C11—C12—C7−1.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.875 (17)2.00 (2)2.848 (3)162 (3)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2617).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Campaigne, E. (1984). In: Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & Rees, C. W. pp. 863–934. Oxford: Pergamon.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203. [PMC free article] [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances New York, Stuttgart: Georg Thieme Verlag.
  • Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett.17, 6895–6898. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography