PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o209.
Published online 2009 December 19. doi:  10.1107/S1600536809053112
PMCID: PMC2980183

2-(Benzo[d]thia­zol-2-ylsulfon­yl)-1-(4-bromo­phen­yl)ethanone

Abstract

In the title mol­ecule, C15H10BrNO3S2, the dihedral angle between the benzothia­zole ring system and the benzene ring is 67.57 (12)°. The crystal structure is stabilized by weak inter­molecular C—H(...)O inter­actions. In addition, there is an inter­molecular Br(...)C [3.379 (3) Å] contact which is shorter than the sum of the van der Waals radii of these atoms.

Related literature

For bond-length data, see Allen et al. (1987 [triangle]). For the applications of related compounds in organic synthesis, see: Marco et al. (1995 [triangle]); Fuju et al. (1988 [triangle]); Ni et al. (2006 [triangle]); Grossert et al. (1984 [triangle]); Oishi et al. (1988) [triangle]; Antane et al. (2004 [triangle]). For the biological activity of related compounds see, Padmavathi et al. (2008 [triangle]). For related structures see: Loghmani-Khouzani et al. (2008 [triangle], 2009a [triangle],b [triangle]); Munoz et al. (2005 [triangle]); Suryakiran et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o209-scheme1.jpg

Experimental

Crystal data

  • C15H10BrNO3S2
  • M r = 396.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o209-efi1.jpg
  • a = 5.6695 (10) Å
  • b = 24.489 (4) Å
  • c = 10.7042 (19) Å
  • β = 94.178 (3)°
  • V = 1482.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.07 mm−1
  • T = 296 K
  • 0.42 × 0.30 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.363, T max = 0.864
  • 6602 measured reflections
  • 2564 independent reflections
  • 2140 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.089
  • S = 1.03
  • 2564 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053112/lh2971sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053112/lh2971Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Isfahan and the University of Malaya for supporting this work.

supplementary crystallographic information

Comment

The existence of so many valence states of sulfur has generated selective and novel ways to affect oxidation, dehydration, and carbon-carbon bond formation (Loghmani-Khouzani et al., 2008). Recent methods that allow introduction of a sulfur constituent β to a carbonyl group have shown particular promise (Loghmani-Khouzani et al., 2009a,b; Suryakiran et al., 2007; Munoz et al., 2005). 2-(1,3-Benzothiazol-2-yl-sulfonyl)-1-(4-bromophenyl)ethanone as a new compound with sulfur atom β to the carbonyl group is of great importance in organic synthesis. β-Keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions (Marco et al., 1995) and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Fuju et al., 1988). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl sulfones and dihalomethyl sulfones (Ni et al., 2006). Halomethyl sulfones and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides, and β-hydroxy-sulfones (Grossert et al., 1984). Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Oishi et al., 1988). They also possess other biological properties such as herbicidal, bactericidal antifungal, algaecidal and insecticidal (Antane et al., 2004). Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We report here the crystal structure of the title compound as a precursor for synthesis of gem-difluoromethylene-containing heterocycle.

In the molecule of the title compound, (Fig. 1), a new thio-benzothiazole derivative, the bond lengths (Allen et al., 1987) and angles are within the normal values and are comparable to the related structures (Loghmani-Khouzani et al., 2008a,b). The dihedral angle between the benzothiazole ring system and the benzene ring is 67.57 (12)°. An interesting feature of the crystal structure is the short intermolecular Br···Civ [3.379 (3) Å; (iv) -x, -y, 2 - z] contact which is shorter than the sum of the van der Waals radii of these atoms. The crystal structure is stabilized by weak intermolecular C—H···O interactions (Table 1, Fig. 2).

Experimental

Sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazol (3 mmol) in ethanol (15 mL) and water (15 mL) and stirred at room temperature for 30 min. 2-bromo-1- (4-bromophenyl)ethanone (3 mmol) was added to the reaction mixture and stirring was continued for 1 h. The reaction was monitored by TLC and after 60 min. showed the complete disappearance of starting materials. The reaction mixture was poured into 100 mL of 1 M HCl containing 50 g of crushed ice. The product was filtered under vacuum and the filtrate was washed with 10 mL ice-cold ethanol and 10 mL water. Recrystallization from petroleum ether and filtration gave 2-(Benzo[d]thiazol-2-ylthio)-1-(4-bromophenyl)ethanone. The product yield was 96%. For oxidation of the resulting Product, m-CPBA (3 mmol) was added to a solution of 2-(1,3-Benzothiazol-2- yl-thio)-1-(4-bromophenyl)ethanone (1 mmol) in CH2Cl2 (20 mL) under stirring at 273K. The mixture was stirred at room temperature for 1 h to complete the reaction. Saturated aqueous sodium sulfite solution (50 mL) was added and the mixture was stirred for a further 1 h at room temperature. The CH2Cl2 layer was washed with water (50 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. Flash chromatography on silica gel using AcOEt/petroleum ether (30:70) afforded 2-(1,3-Benzothiazol-2-ylsulfonyl)-1-(4-bromophenyl) ethanone. The product yield of the resulted β-ketosulfone was 80 %. White solid; m.p.: 196-198 °C; 1H-NMR (400 MHz; CDCl3): δ 8.16-7.47 (m, 8H), 5.67 (s, 2H). 13C-NMR (126 MHz; CDCl3): δ 188.1 (C=O), 154.1, 151.5, 134.8, 133.2, 129.7, 129.1, 126.2, 123.9, 123.1, 121.7, 121.2, 59.8. IR (KBr, cm-1 ): 3010, 2800, 1684 (C=O), 1570, 1401, 1328, 1150, 1122, 970, 803, 752. Anal. Calcd for C15H10BrNO3S2: C, 45.46; H, 2.54; N, 3.53. Found: C, 45.49; H, 2.50; N, 3.43.

Refinement

All of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model approximation with Uiso (H) = 1.2 Ueq (C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Part of the crystal structure of the title compound, viewed approximately along the a-axis, showing molecules connected via weak intermolecular C—H···O interactions. Intermolecular interactions are drawn as dashed lines. ...

Crystal data

C15H10BrNO3S2F(000) = 792
Mr = 396.27Dx = 1.776 Mg m3
Monoclinic, P21/nMelting point: 470 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.6695 (10) ÅCell parameters from 3475 reflections
b = 24.489 (4) Åθ = 2.5–30.3°
c = 10.7042 (19) ŵ = 3.07 mm1
β = 94.178 (3)°T = 296 K
V = 1482.2 (5) Å3Plate, colourless
Z = 40.42 × 0.30 × 0.05 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2564 independent reflections
Radiation source: fine-focus sealed tube2140 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −6→6
Tmin = 0.363, Tmax = 0.864k = −29→23
6602 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = −0.83 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.73768 (6)0.334681 (12)0.50902 (3)0.02981 (14)
C60.1307 (5)0.72648 (11)0.1923 (3)0.0176 (6)
C50.2796 (6)0.77145 (12)0.2066 (3)0.0254 (7)
H5A0.41510.77390.16300.031*
C40.2209 (6)0.81234 (12)0.2872 (3)0.0285 (8)
H4A0.31870.84270.29840.034*
C30.0172 (6)0.80883 (13)0.3521 (3)0.0278 (8)
H3A−0.01670.83680.40690.033*
C2−0.1355 (6)0.76516 (12)0.3374 (3)0.0234 (7)
H2A−0.27190.76330.38050.028*
C1−0.0776 (5)0.72389 (11)0.2555 (3)0.0180 (6)
C70.0046 (5)0.64645 (11)0.1287 (3)0.0152 (6)
C80.2422 (5)0.54542 (11)0.1342 (3)0.0161 (6)
H8A0.27750.51350.08520.019*
H8B0.38300.56800.14140.019*
C90.1874 (5)0.52687 (11)0.2645 (3)0.0187 (7)
C100.3307 (5)0.48088 (11)0.3204 (3)0.0165 (6)
C150.5345 (5)0.46196 (11)0.2724 (3)0.0194 (7)
H15A0.58880.47820.20130.023*
C140.6590 (5)0.41889 (11)0.3296 (3)0.0208 (7)
H14A0.79750.40630.29790.025*
C130.5753 (5)0.39509 (11)0.4333 (3)0.0202 (7)
C120.3738 (6)0.41345 (11)0.4839 (3)0.0225 (7)
H12A0.32090.39710.55510.027*
C110.2519 (6)0.45649 (12)0.4270 (3)0.0226 (7)
H11A0.11540.46940.46030.027*
N10.1732 (4)0.68070 (9)0.1198 (2)0.0176 (6)
O20.0855 (4)0.59122 (8)−0.07094 (18)0.0240 (5)
O1−0.2124 (4)0.55675 (8)0.0658 (2)0.0225 (5)
O30.0318 (4)0.54839 (9)0.3174 (2)0.0296 (6)
S20.01146 (13)0.58258 (3)0.05223 (7)0.01619 (19)
S1−0.22406 (13)0.66352 (3)0.21941 (7)0.0196 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0356 (2)0.0266 (2)0.0268 (2)0.01244 (13)−0.00100 (16)0.00696 (13)
C60.0204 (16)0.0135 (14)0.0185 (15)0.0026 (12)−0.0011 (13)0.0023 (11)
C50.0218 (17)0.0234 (16)0.0309 (18)−0.0031 (13)0.0000 (14)0.0022 (14)
C40.034 (2)0.0193 (16)0.0311 (19)−0.0034 (14)−0.0076 (16)−0.0036 (14)
C30.035 (2)0.0209 (16)0.0269 (18)0.0068 (14)−0.0024 (16)−0.0078 (13)
C20.0246 (17)0.0228 (16)0.0227 (17)0.0080 (13)0.0014 (14)−0.0007 (12)
C10.0195 (16)0.0144 (13)0.0199 (16)0.0022 (12)−0.0008 (13)0.0027 (12)
C70.0165 (15)0.0131 (14)0.0159 (16)0.0031 (11)0.0013 (13)0.0010 (11)
C80.0169 (15)0.0120 (13)0.0196 (16)0.0020 (11)0.0029 (13)0.0013 (11)
C90.0219 (16)0.0167 (14)0.0180 (16)−0.0032 (13)0.0045 (14)−0.0015 (12)
C100.0199 (16)0.0140 (13)0.0161 (15)−0.0011 (12)0.0052 (13)−0.0004 (11)
C150.0198 (16)0.0226 (15)0.0168 (16)−0.0014 (12)0.0085 (13)0.0031 (12)
C140.0176 (15)0.0248 (16)0.0210 (16)0.0048 (12)0.0078 (13)−0.0007 (13)
C130.0275 (17)0.0164 (14)0.0161 (16)0.0040 (13)−0.0015 (14)0.0013 (12)
C120.0281 (18)0.0223 (15)0.0181 (16)0.0040 (14)0.0100 (14)0.0070 (12)
C110.0234 (17)0.0271 (16)0.0184 (16)0.0059 (13)0.0080 (14)0.0003 (13)
N10.0183 (14)0.0164 (12)0.0184 (13)0.0011 (10)0.0044 (11)0.0023 (10)
O20.0311 (12)0.0264 (11)0.0148 (11)0.0048 (9)0.0039 (10)0.0014 (8)
O10.0169 (11)0.0198 (10)0.0310 (13)−0.0034 (9)0.0028 (10)−0.0038 (9)
O30.0376 (14)0.0288 (12)0.0244 (12)0.0144 (10)0.0170 (11)0.0054 (10)
S20.0176 (4)0.0148 (4)0.0163 (4)0.0011 (3)0.0025 (3)−0.0004 (3)
S10.0183 (4)0.0182 (4)0.0230 (4)−0.0002 (3)0.0072 (3)0.0000 (3)

Geometric parameters (Å, °)

Br1—C131.893 (3)C8—S21.773 (3)
C6—C51.389 (4)C8—H8A0.9700
C6—N11.395 (4)C8—H8B0.9700
C6—C11.404 (4)C9—O31.204 (4)
C5—C41.378 (5)C9—C101.489 (4)
C5—H5A0.9300C10—C151.378 (4)
C4—C31.393 (5)C10—C111.391 (4)
C4—H4A0.9300C15—C141.386 (4)
C3—C21.378 (4)C15—H15A0.9300
C3—H3A0.9300C14—C131.369 (4)
C2—C11.393 (4)C14—H14A0.9300
C2—H2A0.9300C13—C121.375 (4)
C1—S11.726 (3)C12—C111.378 (4)
C7—N11.281 (4)C12—H12A0.9300
C7—S11.726 (3)C11—H11A0.9300
C7—S21.767 (3)O2—S21.428 (2)
C8—C91.520 (4)O1—S21.435 (2)
C5—C6—N1124.8 (3)O3—C9—C8120.5 (3)
C5—C6—C1120.5 (3)C10—C9—C8116.9 (3)
N1—C6—C1114.6 (2)C15—C10—C11119.3 (3)
C4—C5—C6118.2 (3)C15—C10—C9123.5 (3)
C4—C5—H5A120.9C11—C10—C9117.1 (3)
C6—C5—H5A120.9C10—C15—C14120.3 (3)
C5—C4—C3120.9 (3)C10—C15—H15A119.8
C5—C4—H4A119.5C14—C15—H15A119.8
C3—C4—H4A119.5C13—C14—C15119.1 (3)
C2—C3—C4121.8 (3)C13—C14—H14A120.5
C2—C3—H3A119.1C15—C14—H14A120.5
C4—C3—H3A119.1C14—C13—C12121.8 (3)
C3—C2—C1117.4 (3)C14—C13—Br1119.6 (2)
C3—C2—H2A121.3C12—C13—Br1118.6 (2)
C1—C2—H2A121.3C13—C12—C11118.7 (3)
C2—C1—C6121.0 (3)C13—C12—H12A120.6
C2—C1—S1129.1 (2)C11—C12—H12A120.6
C6—C1—S1109.8 (2)C12—C11—C10120.7 (3)
N1—C7—S1118.6 (2)C12—C11—H11A119.7
N1—C7—S2120.2 (2)C10—C11—H11A119.7
S1—C7—S2121.18 (17)C7—N1—C6109.0 (3)
C9—C8—S2114.5 (2)O2—S2—O1118.72 (13)
C9—C8—H8A108.6O2—S2—C7108.34 (13)
S2—C8—H8A108.6O1—S2—C7107.07 (13)
C9—C8—H8B108.6O2—S2—C8106.09 (13)
S2—C8—H8B108.6O1—S2—C8110.47 (13)
H8A—C8—H8B107.6C7—S2—C8105.39 (13)
O3—C9—C10122.6 (3)C1—S1—C787.97 (14)
N1—C6—C5—C4−176.3 (3)C14—C13—C12—C111.0 (5)
C1—C6—C5—C42.1 (4)Br1—C13—C12—C11−178.3 (2)
C6—C5—C4—C3−0.4 (4)C13—C12—C11—C100.1 (5)
C5—C4—C3—C2−1.0 (5)C15—C10—C11—C12−0.7 (4)
C4—C3—C2—C10.6 (4)C9—C10—C11—C12179.6 (3)
C3—C2—C1—C61.1 (4)S1—C7—N1—C61.1 (3)
C3—C2—C1—S1178.0 (2)S2—C7—N1—C6−177.54 (19)
C5—C6—C1—C2−2.5 (4)C5—C6—N1—C7178.7 (3)
N1—C6—C1—C2176.0 (3)C1—C6—N1—C70.3 (3)
C5—C6—C1—S1−180.0 (2)N1—C7—S2—O2−43.5 (3)
N1—C6—C1—S1−1.4 (3)S1—C7—S2—O2137.99 (16)
S2—C8—C9—O3−19.1 (4)N1—C7—S2—O1−172.6 (2)
S2—C8—C9—C10159.8 (2)S1—C7—S2—O18.8 (2)
O3—C9—C10—C15−168.3 (3)N1—C7—S2—C869.7 (3)
C8—C9—C10—C1512.9 (4)S1—C7—S2—C8−108.81 (18)
O3—C9—C10—C1111.5 (4)C9—C8—S2—O2−174.09 (19)
C8—C9—C10—C11−167.4 (3)C9—C8—S2—O1−44.2 (2)
C11—C10—C15—C140.3 (4)C9—C8—S2—C771.1 (2)
C9—C10—C15—C14180.0 (3)C2—C1—S1—C7−175.6 (3)
C10—C15—C14—C130.7 (4)C6—C1—S1—C71.6 (2)
C15—C14—C13—C12−1.4 (5)N1—C7—S1—C1−1.6 (2)
C15—C14—C13—Br1177.9 (2)S2—C7—S1—C1176.96 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.563.420 (4)154
C8—H8A···O1ii0.972.373.289 (3)158
C8—H8B···O1iii0.972.503.241 (4)133
C14—H14A···O2iv0.932.563.226 (4)128

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2971).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun.34, 2443–2449.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.
  • Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem.62, 798–807.
  • Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009a). Acta Cryst. E65, o2287. [PMC free article] [PubMed]
  • Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009b). Acta Cryst. E65, o2441. [PMC free article] [PubMed]
  • Loghmani-Khouzani, H., Poorheravi, M. R., Sadeghi, M. M., Caggiano, L. & Jackson, R. F. W. (2008). Tetrahedron, 64, 7419–7425.
  • Marco, J. L., Fernandez, I., Khira, N., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem.60, 6678–6679.
  • Munoz, L., Rosa, E., Pilar Bosch, M. & Guerrero, A. (2005). Tetrahedron Lett.46, 311–313.
  • Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem.71, 6829–6833. [PubMed]
  • Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent 1988 JP63 243 067, 212359.
  • Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem.43, 917–924. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suryakiran, N., Prabhakar, P., Reddy, T. S., Mahesh, K. C., Rajesh, K. & Venkateswarlu, Y. (2007). Tetrahedron Lett.48, 877–881.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography