PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m12.
Published online 2009 December 4. doi:  10.1107/S1600536809051654
PMCID: PMC2980176

Tris(2,2′-bipyridine-κ2 N,N′)cobalt(III) octa­cyanido­tungstate(V)

Abstract

In the title compound, [Co(C10H8N2)3][W(CN)8], the Co atom (..2 site symmetry) is coordinated by six N atoms from three 2,2′-bipyridine ligands in an octa­hedral geometry; the Co—N bond distances range from 1.926 (2) to 1.939 (2) Å. The W (..2 site symmetry) metal center is coordinated by eight cyanide ligands, resulting in a dodeca­hedral conformation with W—C distances in the range 1.165 (3)–2.176 (3) Å. The cations and anions are linked into a three-demensional structure by weak C—H(...)N hydrogen bonds.

Related literature

For compounds with similar architectures, see: Przychodzeń et al. (2006 [triangle]); Withers et al. (2005 [triangle]); Mathonière et al. (2005 [triangle]). For related structures, see: Liu et al. (2008 [triangle]); Chang et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m12-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H8N2)3][W(CN)8]
  • M r = 919.48
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m12-efi5.jpg
  • a = 11.465 (2) Å
  • b = 15.141 (3) Å
  • c = 20.007 (4) Å
  • V = 3473.0 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.84 mm−1
  • T = 250 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.841, T max = 1.000
  • 12594 measured reflections
  • 3554 independent reflections
  • 3023 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.059
  • S = 1.10
  • 3554 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 1.33 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051654/pv2237sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051654/pv2237Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Graduate Innovation Foundation of Nanjing University of Science and Technology.

supplementary crystallographic information

Comment

As the direct addition of transition metal salts and [W(CN)8] ions (Przychodzeń et al., 2006; Withers et al., 2005; Mathonière et al., 2005) leads to the immediate precipitation, the title compound was obtained through the interdiffusion method (Liu et al., 2008; Chang et al., 2002). Based on the crystal structure determination, the cations, [Co(C10H8N2)3]2+, and the anions, [W(CN)8]3-, have a molar ratio of 1:1. It means that the Co2+ of Co(ClO4)2 has been oxided into Co3+ during the reaction process.

As illustrated in Fig. 1, Co3+ has an octahedral geometry, coordinated by six nitrogen atoms from three 2,2'-bipyridine ligands. The W metal center is coordinated by eight cyanide ligands, forming a dodecahedron. The Co—N bond distances range from 1.926 (2) Å to 1.939 (2) Å, while the W—C distances in the [W(CN)8] unit range from 1.165 (3) to 2.176 (3) Å and C—N distances lie between 1.137 (4) Å to 1.144 (4) Å. The cations and the anions are linked with each other by weak C—H···N hydrogen bond into a three-demensional structure. (Fig. 2).

Experimental

Co(ClO4)2 . 6H2O (146.4 mg, 0.4 mmol) and (Bu3N)3[W(CN)8] (44.72 mg, 0.1 mmol) were added into 2 ml dimethylformamide with thorough stirring for 5 minutes. After filtration, 2 ml dimethylformamide solvent and a solution of 2,2'-bipyridine (124.96 mg, 0.8 mmol) in 2 ml CH3OH were successively laid on the surface of the above filtrate. Red block crystals were obtained after five days.

Refinement

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.2Ueq for pyridyl H atoms, the C—H bond is 0.93 Å in 2,2'-bipyridine. The highest peak in the final difference map was located at a distance of 2.12 Å from H2A and was chemically meaningless.

Figures

Fig. 1.
The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. [Symmerty codes: (i) -x + 1/2,-y + 1/2,z; (ii) -x + 3/2,-y + 1/2,z.]
Fig. 2.
The unit cell packing diagram.

Crystal data

[Co(C10H8N2)3][W(CN)8]F(000) = 1803
Mr = 919.48Dx = 1.758 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 10230 reflections
a = 11.465 (2) Åθ = 2.5–31.3°
b = 15.141 (3) ŵ = 3.84 mm1
c = 20.007 (4) ÅT = 250 K
V = 3473.0 (12) Å3Prism, red
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Rigaku Mercury CCD diffractometer3554 independent reflections
Radiation source: fine-focus sealed tube3023 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 2.5°
dtprofit.ref scansh = −14→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −15→18
Tmin = 0.841, Tmax = 1.000l = −25→15
12594 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0237P)2 + 2.7418P] where P = (Fo2 + 2Fc2)/3
3554 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Experimental. Yield: 62.1 mg in pure form, 42.1% based on Co. Analysis calculated for C38H24CoN14W: C 49.59, H 2.61, N 21.32%; found: C 50.31, H 2.88, N 21.44%. IR: ν, cm-1,2132 s.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.25000.25000.44279 (2)0.02694 (12)
N10.0967 (2)0.19603 (17)0.44129 (11)0.0332 (5)
N20.2836 (2)0.16505 (16)0.37377 (12)0.0329 (5)
N30.2091 (2)0.32944 (16)0.51483 (12)0.0328 (5)
C10.0030 (3)0.2192 (2)0.47655 (17)0.0474 (8)
H1A0.00680.26930.50330.057*
C2−0.0986 (3)0.1720 (3)0.47478 (18)0.0574 (10)
H2A−0.16310.19060.49920.069*
C3−0.1042 (3)0.0979 (3)0.43700 (18)0.0606 (11)
H3A−0.17250.06470.43580.073*
C4−0.0087 (3)0.0716 (2)0.40038 (18)0.0521 (9)
H4A−0.01140.02040.37470.063*
C50.0911 (3)0.1222 (2)0.40228 (14)0.0352 (7)
C60.1962 (2)0.10663 (18)0.36179 (14)0.0321 (6)
C70.2071 (3)0.0426 (2)0.31379 (16)0.0434 (8)
H7A0.14670.00270.30640.052*
C80.3073 (3)0.0376 (2)0.27679 (17)0.0479 (8)
H8A0.3156−0.00560.24400.058*
C90.3944 (3)0.0961 (2)0.28839 (17)0.0499 (9)
H9A0.46280.09350.26350.060*
C100.3813 (3)0.1595 (2)0.33709 (16)0.0442 (8)
H10A0.44150.19950.34480.053*
C120.1644 (3)0.4112 (2)0.50934 (16)0.0399 (7)
H12A0.15720.43640.46710.048*
C130.1381 (3)0.4211 (2)0.62628 (17)0.0530 (9)
H13A0.11200.45140.66390.064*
C140.1288 (3)0.4588 (2)0.56437 (16)0.0455 (8)
H14A0.09890.51550.55950.055*
C110.1858 (3)0.3387 (2)0.63277 (17)0.0522 (9)
H11A0.19270.31300.67480.063*
C150.2235 (3)0.2939 (2)0.57651 (15)0.0369 (7)
W10.75000.25000.194217 (8)0.02995 (7)
N40.9827 (3)0.3555 (2)0.13727 (15)0.0565 (8)
N50.8322 (3)0.3742 (2)0.32171 (16)0.0571 (8)
N60.5146 (3)0.3489 (2)0.25333 (15)0.0590 (8)
N70.6578 (3)0.3788 (2)0.07078 (15)0.0569 (8)
C160.9012 (3)0.3203 (2)0.15643 (15)0.0398 (7)
C170.8039 (3)0.3325 (2)0.27706 (16)0.0401 (7)
C180.5961 (3)0.3157 (2)0.23298 (15)0.0397 (7)
C190.6896 (3)0.3344 (2)0.11329 (16)0.0396 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0231 (3)0.0306 (3)0.0271 (3)−0.0031 (2)0.0000.000
N10.0237 (12)0.0422 (15)0.0337 (13)−0.0050 (11)0.0019 (10)0.0019 (11)
N20.0287 (12)0.0375 (14)0.0326 (13)−0.0011 (10)0.0032 (10)−0.0005 (11)
N30.0290 (12)0.0350 (13)0.0343 (13)−0.0030 (10)0.0011 (10)−0.0033 (11)
C10.0336 (16)0.063 (2)0.0456 (18)−0.0053 (16)0.0092 (15)−0.0064 (17)
C20.0346 (18)0.081 (3)0.057 (2)−0.0131 (18)0.0170 (16)−0.009 (2)
C30.0351 (19)0.080 (3)0.067 (2)−0.0240 (19)0.0093 (17)−0.004 (2)
C40.0433 (19)0.055 (2)0.058 (2)−0.0181 (17)0.0029 (16)−0.0068 (18)
C50.0304 (15)0.0398 (17)0.0356 (15)−0.0044 (13)−0.0006 (12)0.0055 (14)
C60.0301 (15)0.0328 (15)0.0334 (15)−0.0011 (12)−0.0028 (12)0.0044 (13)
C70.0379 (17)0.0415 (19)0.051 (2)−0.0034 (15)−0.0036 (14)−0.0026 (15)
C80.052 (2)0.0439 (19)0.0476 (19)0.0035 (16)0.0046 (17)−0.0108 (16)
C90.0405 (19)0.061 (2)0.0481 (19)0.0016 (17)0.0129 (16)−0.0079 (17)
C100.0307 (16)0.053 (2)0.0486 (19)−0.0076 (14)0.0094 (14)−0.0056 (16)
C120.0357 (16)0.0383 (17)0.0457 (18)−0.0006 (14)0.0011 (14)0.0009 (15)
C130.065 (2)0.048 (2)0.047 (2)−0.0058 (18)0.0108 (17)−0.0167 (17)
C140.0397 (18)0.0386 (18)0.058 (2)−0.0019 (15)0.0057 (15)−0.0076 (16)
C110.070 (3)0.050 (2)0.0364 (18)−0.0059 (19)0.0034 (17)−0.0029 (16)
C150.0372 (17)0.0398 (17)0.0336 (15)−0.0084 (13)0.0014 (13)−0.0033 (14)
W10.02626 (9)0.03213 (11)0.03147 (10)0.00157 (7)0.0000.000
N40.0450 (17)0.065 (2)0.0592 (19)−0.0143 (15)0.0015 (15)0.0043 (16)
N50.0503 (19)0.062 (2)0.0592 (19)−0.0056 (16)−0.0012 (15)−0.0185 (16)
N60.0415 (17)0.082 (2)0.0530 (18)0.0177 (16)0.0023 (14)−0.0080 (16)
N70.0489 (18)0.069 (2)0.0526 (18)0.0133 (16)0.0029 (14)0.0204 (16)
C160.0356 (17)0.0418 (17)0.0421 (18)−0.0027 (14)−0.0030 (14)0.0017 (15)
C170.0314 (16)0.0430 (18)0.0459 (18)−0.0010 (14)0.0006 (14)−0.0029 (16)
C180.0346 (17)0.0471 (19)0.0373 (16)0.0043 (14)−0.0005 (13)−0.0007 (15)
C190.0312 (16)0.0458 (18)0.0419 (17)0.0057 (14)0.0043 (14)0.0032 (15)

Geometric parameters (Å, °)

Co1—N21.926 (2)C8—H8A0.9300
Co1—N2i1.926 (2)C9—C101.376 (4)
Co1—N3i1.935 (2)C9—H9A0.9300
Co1—N31.935 (2)C10—H10A0.9300
Co1—N1i1.939 (2)C12—C141.377 (4)
Co1—N11.939 (2)C12—H12A0.9300
N1—C11.332 (4)C13—C141.368 (5)
N1—C51.364 (4)C13—C111.368 (5)
N2—C101.342 (4)C13—H13A0.9300
N2—C61.358 (4)C14—H14A0.9300
N3—C121.345 (4)C11—C151.384 (4)
N3—C151.357 (4)C11—H11A0.9300
C1—C21.367 (5)C15—C15i1.460 (6)
C1—H1A0.9300W1—C172.165 (3)
C2—C31.355 (5)W1—C17ii2.165 (3)
C2—H2A0.9300W1—C18ii2.169 (3)
C3—C41.376 (5)W1—C182.169 (3)
C3—H3A0.9300W1—C162.170 (3)
C4—C51.378 (4)W1—C16ii2.170 (3)
C4—H4A0.9300W1—C19ii2.176 (3)
C5—C61.471 (4)W1—C192.176 (3)
C6—C71.370 (4)N4—C161.142 (4)
C7—C81.369 (5)N5—C171.141 (4)
C7—H7A0.9300N6—C181.137 (4)
C8—C91.355 (5)N7—C191.144 (4)
N2—Co1—N2i88.39 (15)N2—C10—C9121.5 (3)
N2—Co1—N3i94.04 (11)N2—C10—H10A119.3
N2i—Co1—N3i176.06 (10)C9—C10—H10A119.3
N2—Co1—N3176.06 (10)N3—C12—C14121.9 (3)
N2i—Co1—N394.04 (11)N3—C12—H12A119.0
N3i—Co1—N383.70 (15)C14—C12—H12A119.0
N2—Co1—N1i95.11 (10)C14—C13—C11119.8 (3)
N2i—Co1—N1i83.60 (10)C14—C13—H13A120.1
N3i—Co1—N1i93.09 (10)C11—C13—H13A120.1
N3—Co1—N1i88.24 (10)C13—C14—C12118.9 (3)
N2—Co1—N183.60 (10)C13—C14—H14A120.6
N2i—Co1—N195.11 (10)C12—C14—H14A120.6
N3i—Co1—N188.24 (10)C13—C11—C15119.7 (3)
N3—Co1—N193.09 (10)C13—C11—H11A120.2
N1i—Co1—N1178.22 (13)C15—C11—H11A120.2
C1—N1—C5118.7 (3)N3—C15—C11120.5 (3)
C1—N1—Co1127.7 (2)N3—C15—C15i114.32 (17)
C5—N1—Co1113.36 (19)C11—C15—C15i125.2 (2)
C10—N2—C6118.6 (3)C17—W1—C17ii80.10 (17)
C10—N2—Co1126.9 (2)C17—W1—C18ii76.03 (12)
C6—N2—Co1114.46 (19)C17ii—W1—C18ii72.18 (12)
C12—N3—C15119.1 (3)C17—W1—C1872.18 (12)
C12—N3—Co1127.2 (2)C17ii—W1—C1876.03 (12)
C15—N3—Co1113.7 (2)C18ii—W1—C18138.10 (16)
N1—C1—C2122.4 (3)C17—W1—C1675.86 (12)
N1—C1—H1A118.8C17ii—W1—C16141.03 (12)
C2—C1—H1A118.8C18ii—W1—C1672.52 (12)
C3—C2—C1119.2 (3)C18—W1—C16123.33 (12)
C3—C2—H2A120.4C17—W1—C16ii141.03 (12)
C1—C2—H2A120.4C17ii—W1—C16ii75.86 (12)
C2—C3—C4119.9 (3)C18ii—W1—C16ii123.33 (12)
C2—C3—H3A120.0C18—W1—C16ii72.52 (12)
C4—C3—H3A120.0C16—W1—C16ii139.23 (16)
C3—C4—C5119.0 (3)C17—W1—C19ii144.84 (12)
C3—C4—H4A120.5C17ii—W1—C19ii108.76 (12)
C5—C4—H4A120.5C18ii—W1—C19ii74.80 (11)
N1—C5—C4120.7 (3)C18—W1—C19ii142.59 (11)
N1—C5—C6114.1 (2)C16—W1—C19ii76.99 (12)
C4—C5—C6125.1 (3)C16ii—W1—C19ii72.95 (11)
N2—C6—C7121.1 (3)C17—W1—C19108.76 (12)
N2—C6—C5113.7 (3)C17ii—W1—C19144.84 (12)
C7—C6—C5125.1 (3)C18ii—W1—C19142.59 (11)
C8—C7—C6119.6 (3)C18—W1—C1974.80 (11)
C8—C7—H7A120.2C16—W1—C1972.95 (11)
C6—C7—H7A120.2C16ii—W1—C1976.99 (12)
C9—C8—C7119.3 (3)C19ii—W1—C1983.84 (16)
C9—C8—H8A120.3N4—C16—W1178.2 (3)
C7—C8—H8A120.3N5—C17—W1178.3 (3)
C8—C9—C10119.8 (3)N6—C18—W1178.9 (3)
C8—C9—H9A120.1N7—C19—W1179.9 (4)
C10—C9—H9A120.1

Symmetry codes: (i) −x+1/2, −y+1/2, z; (ii) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···N4iii0.932.533.371 (4)151
C10—H10A···N1iv0.932.543.032 (4)114
C12—H12A···N2iv0.932.513.008 (4)114
C1—H1A···N30.932.502.993 (4)113

Symmetry codes: (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2237).

References

  • Chang, F., Sun, H. L., Kou, H. Z. & Gao, S. (2002). Inorg Chem Commun 5, 660–663.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152–m1153. [PMC free article] [PubMed]
  • Mathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem Mater 17, 442–449.
  • Przychodzeń, P., Korzenial, T., Podgajny, R. & Sieklucka, B. (2006). Coord Chem Rev 250, 2234–2260.
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg Chem 44, 352–358. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography