PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o215.
Published online 2009 December 19. doi:  10.1107/S160053680905418X
PMCID: PMC2980175

5-Bromo-2-(4-fluoro­phen­yl)-7-methyl-3-methyl­sulfinyl-1-benzofuran

Abstract

In the title compound, C16H12BrFO2S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 16.17 (5)°. The crystal structure exhibits an inter­molecular C—H(...)O hydrogen bond and a Br(...)O halogen inter­action [3.112 (2) Å].

Related literature

For the crystal structures of similar 2-(4-fluoro­phen­yl)-5-halo-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a [triangle],b [triangle], 2010 [triangle]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999 [triangle]); Twyman & Allsop (1999 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]). For a review of halogen inter­actions, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o215-scheme1.jpg

Experimental

Crystal data

  • C16H12BrFO2S
  • M r = 367.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o215-efi1.jpg
  • a = 7.5313 (6) Å
  • b = 9.8089 (7) Å
  • c = 10.9117 (8) Å
  • α = 106.567 (1)°
  • β = 92.634 (1)°
  • γ = 109.526 (1)°
  • V = 719.23 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.01 mm−1
  • T = 173 K
  • 0.60 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.586, T max = 0.746
  • 6248 measured reflections
  • 3083 independent reflections
  • 2802 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.060
  • S = 1.05
  • 3083 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905418X/kp2245sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905418X/kp2245Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Molecules of benzofuran ring skeleton have attracted considerable interest, on account of their pharmacological activity (Howlett et al., 1999; Twyman & Allsop, 1999) and their occurrence as natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies on the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009a, b, 2010), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.014 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 16.17 (5)°. The crystal packing (Fig. 2) is stabilized by an intermolecular C—H···O hydrogen bond between the methyl H atom and the oxygen of the S═O unit, with a C15—H15C···O2i (Table 1and Fig. 2). The contact C-Br···O involving the the oxygen atom of the S═O unit [Br···O2ii = 3.112 (1) Å; C—Br···O2ii = 173.44 (7)°] is significantly shorter than the sum of van der Waals radia (3.40 Å) (Politzer et al., 2007).

Experimental

77% 3-Chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-fluorophenyl)-7-methyl-3-methylsulfanyl-1-benzofuran (351 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 85%, m.p. 477–478 K; Rf = 0.71 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C—H···O and C—Br···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x, y + 1, z; (ii) - x + 1, - y + 1, - z + 2; (iii) x, y - 1, z .]

Crystal data

C16H12BrFO2SZ = 2
Mr = 367.23F(000) = 368
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5313 (6) ÅCell parameters from 4231 reflections
b = 9.8089 (7) Åθ = 2.3–27.4°
c = 10.9117 (8) ŵ = 3.01 mm1
α = 106.567 (1)°T = 173 K
β = 92.634 (1)°Block, colourless
γ = 109.526 (1)°0.60 × 0.40 × 0.20 mm
V = 719.23 (9) Å3

Data collection

Bruker SMART APEXII CCD diffractometer3083 independent reflections
Radiation source: Rotating Anode2802 reflections with I > 2σ(I)
HELIOSRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.0°
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −12→12
Tmin = 0.586, Tmax = 0.746l = −13→13
6248 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.060H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0302P)2 + 0.3573P] where P = (Fo2 + 2Fc2)/3
3083 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.56892 (3)0.75819 (2)1.066631 (17)0.02668 (7)
S0.18420 (7)0.22498 (5)0.55788 (4)0.02381 (11)
O10.31077 (18)0.62985 (14)0.50645 (12)0.0214 (3)
O20.3359 (2)0.21723 (16)0.64548 (14)0.0320 (3)
F−0.0757 (2)0.21942 (17)−0.05951 (11)0.0476 (4)
C10.2455 (3)0.4180 (2)0.56565 (17)0.0207 (4)
C20.3406 (3)0.5483 (2)0.67945 (17)0.0197 (3)
C30.3970 (3)0.5713 (2)0.81000 (17)0.0217 (4)
H30.37260.49010.84270.026*
C40.4906 (3)0.7202 (2)0.88760 (17)0.0216 (4)
C50.5318 (3)0.8455 (2)0.84171 (18)0.0217 (4)
H50.59730.94340.89850.026*
C60.4760 (3)0.8255 (2)0.71248 (18)0.0207 (4)
C70.3798 (2)0.6748 (2)0.63653 (17)0.0193 (3)
C80.2316 (2)0.4724 (2)0.46474 (18)0.0203 (4)
C90.1517 (3)0.4038 (2)0.32705 (17)0.0215 (4)
C100.0209 (3)0.2541 (2)0.27673 (19)0.0283 (4)
H10−0.01670.19610.33160.034*
C11−0.0534 (3)0.1909 (3)0.1460 (2)0.0332 (5)
H11−0.13760.09030.11210.040*
C120.0004 (3)0.2802 (3)0.06824 (19)0.0318 (5)
C130.1276 (3)0.4285 (3)0.11316 (19)0.0298 (4)
H130.16070.48600.05750.036*
C140.2051 (3)0.4901 (2)0.24326 (19)0.0252 (4)
H140.29330.58950.27520.030*
C150.5111 (3)0.9548 (2)0.65832 (19)0.0268 (4)
H15A0.55310.92860.57600.040*
H15B0.60761.04480.71680.040*
H15C0.39520.97370.64750.040*
C16−0.0164 (3)0.2099 (3)0.6426 (2)0.0351 (5)
H16A−0.06390.11110.65380.053*
H16B−0.11500.22300.59360.053*
H16C0.02220.28740.72580.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.03804 (12)0.02214 (11)0.01767 (10)0.01046 (8)−0.00056 (7)0.00439 (7)
S0.0331 (3)0.0152 (2)0.0220 (2)0.00897 (19)0.00200 (19)0.00445 (17)
O10.0269 (7)0.0172 (6)0.0193 (6)0.0071 (5)0.0009 (5)0.0062 (5)
O20.0397 (8)0.0274 (8)0.0342 (8)0.0167 (7)0.0012 (6)0.0128 (6)
F0.0504 (8)0.0559 (9)0.0194 (6)0.0055 (7)−0.0086 (6)0.0053 (6)
C10.0239 (9)0.0164 (8)0.0205 (9)0.0066 (7)0.0025 (7)0.0052 (7)
C20.0223 (8)0.0170 (8)0.0208 (9)0.0087 (7)0.0039 (7)0.0055 (7)
C30.0282 (9)0.0175 (9)0.0211 (9)0.0095 (7)0.0039 (7)0.0075 (7)
C40.0260 (9)0.0226 (9)0.0174 (8)0.0112 (7)0.0019 (7)0.0058 (7)
C50.0232 (9)0.0159 (9)0.0232 (9)0.0071 (7)0.0020 (7)0.0026 (7)
C60.0222 (9)0.0170 (9)0.0239 (9)0.0083 (7)0.0051 (7)0.0065 (7)
C70.0211 (8)0.0186 (9)0.0186 (8)0.0076 (7)0.0015 (7)0.0062 (7)
C80.0200 (8)0.0173 (9)0.0221 (9)0.0063 (7)0.0034 (7)0.0046 (7)
C90.0203 (8)0.0242 (9)0.0202 (9)0.0095 (7)0.0020 (7)0.0059 (7)
C100.0276 (10)0.0276 (10)0.0253 (10)0.0051 (8)0.0010 (8)0.0083 (8)
C110.0282 (10)0.0311 (11)0.0287 (11)0.0026 (9)−0.0032 (8)0.0033 (9)
C120.0290 (10)0.0415 (12)0.0187 (9)0.0108 (9)−0.0018 (8)0.0037 (9)
C130.0310 (10)0.0368 (12)0.0233 (10)0.0117 (9)0.0031 (8)0.0130 (9)
C140.0259 (9)0.0247 (10)0.0242 (9)0.0093 (8)0.0022 (8)0.0070 (8)
C150.0364 (11)0.0192 (9)0.0261 (10)0.0102 (8)0.0063 (8)0.0087 (8)
C160.0333 (11)0.0280 (11)0.0443 (13)0.0068 (9)0.0101 (10)0.0164 (10)

Geometric parameters (Å, °)

Br—C41.907 (2)C6—C151.497 (3)
Br—O2i3.112 (2)C8—C91.463 (2)
S—O21.491 (2)C9—C101.397 (3)
S—C11.768 (2)C9—C141.401 (3)
S—C161.794 (2)C10—C111.386 (3)
O1—C71.379 (2)C10—H100.9300
O1—C81.381 (2)C11—C121.368 (3)
F—C121.360 (2)C11—H110.9300
C1—C81.368 (3)C12—C131.375 (3)
C1—C21.445 (2)C13—C141.386 (3)
C2—C71.394 (2)C13—H130.9300
C2—C31.399 (2)C14—H140.9300
C3—C41.378 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.403 (3)C15—H15C0.9600
C5—C61.391 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.389 (2)C16—H16C0.9600
C4—Br—O2i173.44 (7)C10—C9—C8121.62 (17)
O2—S—C1107.33 (9)C14—C9—C8119.58 (17)
O2—S—C16105.95 (10)C11—C10—C9120.85 (19)
C1—S—C1697.80 (9)C11—C10—H10119.6
C7—O1—C8106.74 (13)C9—C10—H10119.6
C8—C1—C2107.32 (16)C12—C11—C10118.3 (2)
C8—C1—S127.08 (14)C12—C11—H11120.8
C2—C1—S125.27 (14)C10—C11—H11120.8
C7—C2—C3118.96 (16)F—C12—C11118.39 (19)
C7—C2—C1105.04 (15)F—C12—C13118.55 (19)
C3—C2—C1136.00 (17)C11—C12—C13123.06 (19)
C4—C3—C2116.62 (16)C12—C13—C14118.48 (19)
C4—C3—H3121.7C12—C13—H13120.8
C2—C3—H3121.7C14—C13—H13120.8
C3—C4—C5123.42 (17)C13—C14—C9120.46 (18)
C3—C4—Br118.40 (14)C13—C14—H14119.8
C5—C4—Br118.17 (14)C9—C14—H14119.8
C6—C5—C4120.97 (17)C6—C15—H15A109.5
C6—C5—H5119.5C6—C15—H15B109.5
C4—C5—H5119.5H15A—C15—H15B109.5
C7—C6—C5114.57 (16)C6—C15—H15C109.5
C7—C6—C15121.86 (17)H15A—C15—H15C109.5
C5—C6—C15123.54 (17)H15B—C15—H15C109.5
O1—C7—C6124.01 (16)S—C16—H16A109.5
O1—C7—C2110.54 (15)S—C16—H16B109.5
C6—C7—C2125.44 (17)H16A—C16—H16B109.5
C1—C8—O1110.33 (16)S—C16—H16C109.5
C1—C8—C9135.27 (17)H16A—C16—H16C109.5
O1—C8—C9114.40 (15)H16B—C16—H16C109.5
C10—C9—C14118.79 (17)
O2—S—C1—C8138.31 (17)C1—C2—C7—O11.57 (19)
C16—S—C1—C8−112.23 (18)C3—C2—C7—C61.6 (3)
O2—S—C1—C2−34.18 (18)C1—C2—C7—C6−177.92 (17)
C16—S—C1—C275.29 (18)C2—C1—C8—O1−0.4 (2)
C8—C1—C2—C7−0.7 (2)S—C1—C8—O1−173.93 (13)
S—C1—C2—C7172.99 (14)C2—C1—C8—C9−179.25 (19)
C8—C1—C2—C3179.9 (2)S—C1—C8—C97.2 (3)
S—C1—C2—C3−6.4 (3)C7—O1—C8—C11.32 (19)
C7—C2—C3—C4−0.6 (3)C7—O1—C8—C9−179.53 (14)
C1—C2—C3—C4178.7 (2)C1—C8—C9—C1017.4 (3)
C2—C3—C4—C5−0.7 (3)O1—C8—C9—C10−161.47 (17)
C2—C3—C4—Br179.49 (13)C1—C8—C9—C14−163.3 (2)
C3—C4—C5—C61.1 (3)O1—C8—C9—C1417.8 (2)
Br—C4—C5—C6−179.08 (14)C14—C9—C10—C110.7 (3)
C4—C5—C6—C7−0.2 (3)C8—C9—C10—C11180.00 (18)
C4—C5—C6—C15178.35 (17)C9—C10—C11—C12−1.8 (3)
C8—O1—C7—C6177.69 (17)C10—C11—C12—F−178.57 (19)
C8—O1—C7—C2−1.81 (19)C10—C11—C12—C131.4 (3)
C5—C6—C7—O1179.43 (16)F—C12—C13—C14−179.89 (18)
C15—C6—C7—O10.9 (3)C11—C12—C13—C140.1 (3)
C5—C6—C7—C2−1.1 (3)C12—C13—C14—C9−1.3 (3)
C15—C6—C7—C2−179.68 (17)C10—C9—C14—C130.8 (3)
C3—C2—C7—O1−178.94 (15)C8—C9—C14—C13−178.44 (17)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O2ii0.962.583.294 (2)131

Symmetry codes: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2245).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). SADABS APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2608. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2649. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PubMed]
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]
  • Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett 40, 9383–9384.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography