PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o138.
Published online 2009 December 16. doi:  10.1107/S1600536809050879
PMCID: PMC2980174

7-Benzyl­oxymethyl-9-bromo-6-chloro-9-deaza­purine

Abstract

The title compound, C14H11BrClN3O, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, the molecules are linked by C—N(...)Br halogen bonds, as well as weak methyl­ene C—H(...)π, phenyl C—H(...)π, C—H(...)Br and phenyl C—H(...)O(ether) inter­actions.

Related literature

For synthetic details, see Clinch et al. (2010 [triangle]). For Br(...)N halogen bonding, see: Kubicki (2004 [triangle]); Metrangolo et al. (2008 [triangle]). For a related structure, see: Sakore & Sobell (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o138-scheme1.jpg

Experimental

Crystal data

  • C14H11BrClN3O
  • M r = 352.62
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o138-efi1.jpg
  • a = 7.8999 (2) Å
  • b = 11.5023 (4) Å
  • c = 15.5571 (5) Å
  • α = 86.111 (2)°
  • β = 84.564 (2)°
  • γ = 89.037 (2)°
  • V = 1403.95 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.12 mm−1
  • T = 118 K
  • 0.41 × 0.21 × 0.02 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.606, T max = 0.747
  • 40101 measured reflections
  • 9403 independent reflections
  • 6435 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.081
  • S = 1.01
  • 9403 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT and SADABS (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Selected torsion angles (°)
Table 2
Hydrogen-bond geometry (Å, °)
Table 3
C—N(...)Br inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050879/wn2368sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050879/wn2368Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a New Zealand Foundation for Research Science and Technology contract [number C08X0701]. We thank Dr C. Fitchett of the University of Canterbury, New Zealand, for his assistance.

supplementary crystallographic information

Comment

The title compound was prepared for incorporation into potential transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase (Clinch et al., 2010).

The asymmetric unit of the title compound contains two independent 7-benzyloxymethyl-9-bromo-6-chloro-9-deazapurine molecules (Fig. 1, Table 1) which are nearly identical. The molecular labels are related by the addition of a prime (e.g. molecule 1, Br9 and molecule 2, Br9'). The overlay figure (Fig. 2) illustrates the rmsd fit of 0.077 Å, with maximum deviation at the Cl6 (C16') atom sites of 0.274 Å. The five-membered rings (i.e. C4,C5,C8,C9,N7) are planar (maximum deviations 0.004 (2), 0.001 (2) Å), as are the fused six-membered rings (C4,C5,C6,N1,C2,N3) with maximum deviations 0.017 (2), 0.010 (2) Å; the angles between these two planes are 2.62 (13) and 1.00 (12)°, respectively. The dihedral angles between the mean planes through the deazapurine ring systems and the phenyl rings are 52.76 (12) and 58.02 (11)°.

Torsion angles (Table 1) are similar to those observed earlier in 9-ethyl-8-bromohypoxanthine (Sakore & Sobell, 1969).

Lattice binding is provided principally by Br···N halogen bonding (Metrangolo et al., 2008; Kubicki, 2004) between the two independent molecules, forming layers parallel to the (0,1,2) plane (Table 3; Fig. 3). Inter-layer links are provided by weak methylene C–H···π, phenyl C–H···π, C–H···Br, and phenyl C–H···O(ether) interactions (Table 2). In Table 2, Cg1 and Cg2 are the centroids of N7',C4',C5',C8',C9' and C13'–C18', respectively.

Experimental

Synthetic details are given in Clinch et al. (2010).

Refinement

Data was restricted to 2θ = 64°. All carbon-bound H atoms were constrained to their expected geometries [C—H 0.95, 0.99 Å] and refined with Uiso(H) = 1.2Ueq(parent atom). All non-hydrogen atoms were refined with anisotropic thermal parameters.

Figures

Fig. 1.
Asymmetric unit of the title compound (Farrugia, 1997).
Fig. 2.
Overlap view of the two molecules (Mercury 2.3, Macrae et al. (2008)). Single coloured (purple) molecule is primed molecule 2.
Fig. 3.
A packing view (Mercury 2.3, Macrae et al. (2008)) of the unit cell, highlighting the layers formed by Br···N bonding in the crystal structure (Table 3). Some of the other weak interactions (Table 2) are shown, with contact atoms ...

Crystal data

C14H11BrClN3OZ = 4
Mr = 352.62F(000) = 704
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8999 (2) ÅCell parameters from 7237 reflections
b = 11.5023 (4) Åθ = 2.3–28.2°
c = 15.5571 (5) ŵ = 3.12 mm1
α = 86.111 (2)°T = 118 K
β = 84.564 (2)°Plate, colourless
γ = 89.037 (2)°0.41 × 0.21 × 0.02 mm
V = 1403.95 (8) Å3

Data collection

Bruker APEXII CCD diffractometer9403 independent reflections
Radiation source: fine-focus sealed tube6435 reflections with I > 2σ(I)
graphiteRint = 0.060
Detector resolution: 8.333 pixels mm-1θmax = 32.0°, θmin = 2.8°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (Blessing, 1995)k = −17→17
Tmin = 0.606, Tmax = 0.747l = −23→23
40101 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0269P)2 + 0.5143P] where P = (Fo2 + 2Fc2)/3
9403 reflections(Δ/σ)max = 0.002
361 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br90.07829 (3)−0.13291 (2)0.558649 (16)0.02240 (6)
Cl60.55993 (8)0.24034 (6)0.75030 (4)0.03239 (15)
N10.6523 (2)0.0585 (2)0.66667 (15)0.0294 (5)
C20.6243 (3)−0.0336 (3)0.62176 (19)0.0337 (7)
H20.7222−0.07600.60100.040*
N30.4768 (2)−0.07252 (19)0.60296 (14)0.0271 (5)
C40.3419 (3)−0.0102 (2)0.63424 (15)0.0204 (5)
C50.3551 (3)0.0859 (2)0.68449 (15)0.0194 (5)
C60.5190 (3)0.1184 (2)0.69711 (16)0.0226 (5)
N70.1938 (2)0.12957 (17)0.70536 (13)0.0200 (4)
C80.0815 (3)0.0629 (2)0.66795 (15)0.0207 (5)
H8−0.03830.07450.67200.025*
C90.1670 (3)−0.0223 (2)0.62432 (15)0.0187 (5)
C100.1459 (3)0.2263 (2)0.75875 (16)0.0244 (5)
H10A0.20340.29750.73210.029*
H10B0.02180.24000.75920.029*
O110.1867 (2)0.20846 (15)0.84366 (11)0.0265 (4)
C120.0892 (4)0.1195 (3)0.89288 (19)0.0465 (8)
H12A0.11870.04260.87020.056*
H12B−0.03360.13440.88880.056*
C130.1286 (4)0.1199 (3)0.98518 (18)0.0343 (6)
C140.0310 (4)0.1865 (2)1.0417 (2)0.0362 (7)
H14−0.05920.23331.02150.043*
C150.0629 (4)0.1861 (3)1.12723 (19)0.0377 (7)
H15−0.00610.23181.16560.045*
C160.1938 (4)0.1200 (3)1.1573 (2)0.0395 (7)
H160.21580.12001.21630.047*
C170.2929 (4)0.0539 (3)1.1013 (2)0.0446 (8)
H170.38410.00821.12150.054*
C180.2602 (4)0.0536 (3)1.0156 (2)0.0410 (7)
H180.32890.00730.97730.049*
Br9'0.59248 (3)0.72770 (2)0.500913 (16)0.02152 (6)
Cl6'1.15241 (7)0.36355 (6)0.28870 (4)0.02845 (14)
N1'1.2108 (2)0.54047 (18)0.37585 (13)0.0228 (4)
C2'1.1644 (3)0.6305 (2)0.42386 (17)0.0257 (5)
H2'1.25470.67440.44110.031*
N3'1.0089 (2)0.66584 (18)0.45013 (13)0.0223 (4)
C4'0.8857 (3)0.6018 (2)0.42261 (15)0.0182 (5)
C5'0.9182 (3)0.5069 (2)0.37055 (14)0.0175 (4)
C6'1.0881 (3)0.4791 (2)0.34985 (15)0.0197 (5)
N7'0.7642 (2)0.46355 (17)0.35311 (12)0.0190 (4)
C8'0.6378 (3)0.5300 (2)0.39368 (15)0.0199 (5)
H8'0.51940.51860.39210.024*
C9'0.7066 (3)0.6140 (2)0.43611 (15)0.0190 (5)
C10'0.7317 (3)0.3645 (2)0.30284 (16)0.0225 (5)
H10C0.80140.29710.32220.027*
H10D0.61070.34270.31500.027*
O11'0.76778 (19)0.38677 (15)0.21388 (11)0.0250 (4)
C12'0.6421 (3)0.4559 (3)0.17201 (17)0.0320 (6)
H12C0.65460.53920.18200.038*
H12D0.52640.43120.19530.038*
C13'0.6698 (3)0.4377 (2)0.07720 (17)0.0271 (6)
C14'0.5969 (3)0.3438 (3)0.04404 (19)0.0361 (7)
H14'0.52470.29280.08100.043*
C15'0.6289 (4)0.3240 (3)−0.04277 (19)0.0408 (7)
H15'0.57900.2592−0.06520.049*
C16'0.7331 (3)0.3979 (3)−0.09698 (19)0.0371 (7)
H16'0.75550.3842−0.15650.045*
C17'0.8045 (4)0.4920 (3)−0.06387 (19)0.0397 (7)
H17'0.87580.5434−0.10080.048*
C18'0.7726 (3)0.5115 (3)0.02262 (18)0.0357 (7)
H18'0.82210.57660.04480.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br90.01902 (11)0.02210 (13)0.02763 (14)−0.00162 (8)−0.00850 (9)−0.00370 (10)
Cl60.0302 (3)0.0355 (4)0.0336 (4)−0.0109 (3)−0.0062 (3)−0.0109 (3)
N10.0160 (9)0.0408 (14)0.0332 (13)−0.0029 (8)−0.0051 (8)−0.0111 (11)
C20.0144 (11)0.0463 (18)0.0423 (18)0.0040 (10)−0.0035 (10)−0.0164 (14)
N30.0163 (9)0.0343 (13)0.0323 (13)0.0021 (8)−0.0042 (8)−0.0107 (10)
C40.0173 (10)0.0242 (13)0.0198 (13)−0.0013 (8)−0.0034 (8)0.0004 (10)
C50.0167 (10)0.0251 (13)0.0166 (12)−0.0010 (8)−0.0030 (8)−0.0005 (10)
C60.0216 (11)0.0289 (14)0.0182 (12)−0.0054 (9)−0.0058 (9)−0.0025 (10)
N70.0170 (9)0.0223 (11)0.0213 (11)0.0000 (7)−0.0034 (7)−0.0049 (8)
C80.0149 (10)0.0263 (13)0.0214 (13)−0.0008 (8)−0.0044 (8)−0.0019 (10)
C90.0174 (10)0.0204 (12)0.0191 (12)−0.0024 (8)−0.0052 (8)−0.0022 (9)
C100.0272 (12)0.0232 (13)0.0230 (14)0.0031 (9)−0.0011 (9)−0.0045 (11)
O110.0326 (9)0.0286 (10)0.0185 (9)−0.0086 (7)−0.0009 (7)−0.0031 (8)
C120.062 (2)0.051 (2)0.0268 (17)−0.0310 (16)−0.0012 (14)0.0029 (14)
C130.0421 (15)0.0349 (16)0.0258 (15)−0.0169 (12)−0.0013 (11)0.0004 (12)
C140.0421 (16)0.0290 (16)0.0390 (18)−0.0022 (12)−0.0110 (13)−0.0023 (13)
C150.0475 (17)0.0343 (17)0.0324 (17)−0.0003 (13)−0.0042 (13)−0.0100 (13)
C160.0494 (17)0.0420 (18)0.0281 (16)−0.0092 (14)−0.0097 (13)0.0007 (14)
C170.0379 (16)0.049 (2)0.047 (2)−0.0003 (14)−0.0113 (14)0.0032 (16)
C180.0364 (15)0.0460 (19)0.0393 (19)−0.0044 (13)0.0072 (13)−0.0086 (15)
Br9'0.01786 (10)0.02498 (14)0.02185 (13)0.00062 (8)−0.00097 (8)−0.00401 (10)
Cl6'0.0234 (3)0.0316 (3)0.0305 (4)0.0022 (2)0.0014 (2)−0.0094 (3)
N1'0.0177 (9)0.0271 (12)0.0235 (12)−0.0024 (8)−0.0023 (7)−0.0005 (9)
C2'0.0148 (10)0.0315 (14)0.0315 (15)−0.0057 (9)−0.0052 (9)−0.0012 (11)
N3'0.0187 (9)0.0254 (11)0.0235 (11)−0.0034 (8)−0.0044 (8)−0.0029 (9)
C4'0.0177 (10)0.0192 (12)0.0178 (12)−0.0013 (8)−0.0034 (8)0.0009 (9)
C5'0.0166 (9)0.0222 (12)0.0142 (11)−0.0025 (8)−0.0035 (8)−0.0017 (9)
C6'0.0199 (10)0.0236 (12)0.0151 (12)0.0011 (9)0.0007 (8)0.0001 (10)
N7'0.0151 (8)0.0243 (11)0.0187 (11)−0.0031 (7)−0.0040 (7)−0.0045 (8)
C8'0.0122 (9)0.0282 (13)0.0189 (12)−0.0001 (8)−0.0013 (8)0.0021 (10)
C9'0.0188 (10)0.0224 (12)0.0158 (12)−0.0008 (8)−0.0014 (8)−0.0007 (9)
C10'0.0236 (11)0.0229 (13)0.0219 (13)−0.0037 (9)−0.0056 (9)−0.0037 (10)
O11'0.0226 (8)0.0349 (10)0.0187 (9)0.0060 (7)−0.0058 (6)−0.0064 (8)
C12'0.0312 (13)0.0412 (17)0.0249 (15)0.0107 (11)−0.0078 (10)−0.0060 (12)
C13'0.0260 (12)0.0348 (15)0.0219 (14)0.0063 (10)−0.0079 (10)−0.0055 (11)
C14'0.0411 (15)0.0394 (17)0.0282 (16)−0.0068 (12)−0.0063 (12)0.0005 (13)
C15'0.0510 (17)0.0438 (19)0.0299 (17)−0.0083 (14)−0.0098 (13)−0.0089 (14)
C16'0.0405 (15)0.0497 (19)0.0226 (15)0.0026 (13)−0.0079 (11)−0.0064 (13)
C17'0.0404 (16)0.052 (2)0.0272 (16)−0.0108 (13)−0.0059 (12)0.0008 (14)
C18'0.0412 (15)0.0386 (17)0.0294 (16)−0.0075 (12)−0.0114 (12)−0.0052 (13)

Geometric parameters (Å, °)

Br9—C91.870 (2)Br9'—C9'1.873 (2)
Cl6—C61.726 (2)Cl6'—C6'1.728 (2)
N1—C61.316 (3)N1'—C6'1.318 (3)
N1—C21.341 (3)N1'—C2'1.344 (3)
C2—N31.320 (3)C2'—N3'1.324 (3)
C2—H20.9500C2'—H2'0.9500
N3—C41.345 (3)N3'—C4'1.348 (3)
C4—C51.407 (3)C4'—C5'1.409 (3)
C4—C91.415 (3)C4'—C9'1.417 (3)
C5—N71.380 (3)C5'—N7'1.379 (3)
C5—C61.390 (3)C5'—C6'1.388 (3)
N7—C81.377 (3)N7'—C8'1.379 (3)
N7—C101.457 (3)N7'—C10'1.465 (3)
C8—C91.363 (3)C8'—C9'1.355 (3)
C8—H80.9500C8'—H8'0.9500
C10—O111.390 (3)C10'—O11'1.394 (3)
C10—H10A0.9900C10'—H10C0.9900
C10—H10B0.9900C10'—H10D0.9900
O11—C121.427 (3)O11'—C12'1.438 (3)
C12—C131.498 (4)C12'—C13'1.499 (4)
C12—H12A0.9900C12'—H12C0.9900
C12—H12B0.9900C12'—H12D0.9900
C13—C141.378 (4)C13'—C18'1.377 (4)
C13—C181.380 (4)C13'—C14'1.385 (4)
C14—C151.377 (4)C14'—C15'1.384 (4)
C14—H140.9500C14'—H14'0.9500
C15—C161.372 (4)C15'—C16'1.381 (4)
C15—H150.9500C15'—H15'0.9500
C16—C171.376 (4)C16'—C17'1.380 (4)
C16—H160.9500C16'—H16'0.9500
C17—C181.382 (4)C17'—C18'1.378 (4)
C17—H170.9500C17'—H17'0.9500
C18—H180.9500C18'—H18'0.9500
C6—N1—C2117.6 (2)C6'—N1'—C2'117.19 (19)
N3—C2—N1127.8 (2)N3'—C2'—N1'128.2 (2)
N3—C2—H2116.1N3'—C2'—H2'115.9
N1—C2—H2116.1N1'—C2'—H2'115.9
C2—N3—C4113.9 (2)C2'—N3'—C4'113.4 (2)
N3—C4—C5123.5 (2)N3'—C4'—C5'123.7 (2)
N3—C4—C9130.0 (2)N3'—C4'—C9'129.7 (2)
C5—C4—C9106.56 (19)C5'—C4'—C9'106.58 (19)
N7—C5—C6135.4 (2)N7'—C5'—C6'135.8 (2)
N7—C5—C4108.42 (18)N7'—C5'—C4'108.19 (18)
C6—C5—C4116.1 (2)C6'—C5'—C4'116.05 (19)
N1—C6—C5121.1 (2)N1'—C6'—C5'121.4 (2)
N1—C6—Cl6116.47 (17)N1'—C6'—Cl6'115.92 (17)
C5—C6—Cl6122.42 (19)C5'—C6'—Cl6'122.65 (18)
C8—N7—C5107.50 (19)C8'—N7'—C5'107.52 (19)
C8—N7—C10124.96 (19)C8'—N7'—C10'123.80 (18)
C5—N7—C10127.53 (19)C5'—N7'—C10'128.67 (19)
C9—C8—N7110.16 (19)C9'—C8'—N7'110.33 (19)
C9—C8—H8124.9C9'—C8'—H8'124.8
N7—C8—H8124.9N7'—C8'—H8'124.8
C8—C9—C4107.4 (2)C8'—C9'—C4'107.4 (2)
C8—C9—Br9128.03 (17)C8'—C9'—Br9'127.83 (17)
C4—C9—Br9124.56 (18)C4'—C9'—Br9'124.78 (17)
O11—C10—N7113.9 (2)O11'—C10'—N7'113.58 (19)
O11—C10—H10A108.8O11'—C10'—H10C108.9
N7—C10—H10A108.8N7'—C10'—H10C108.9
O11—C10—H10B108.8O11'—C10'—H10D108.9
N7—C10—H10B108.8N7'—C10'—H10D108.9
H10A—C10—H10B107.7H10C—C10'—H10D107.7
C10—O11—C12113.6 (2)C10'—O11'—C12'115.05 (18)
O11—C12—C13108.2 (2)O11'—C12'—C13'107.2 (2)
O11—C12—H12A110.1O11'—C12'—H12C110.3
C13—C12—H12A110.1C13'—C12'—H12C110.3
O11—C12—H12B110.1O11'—C12'—H12D110.3
C13—C12—H12B110.1C13'—C12'—H12D110.3
H12A—C12—H12B108.4H12C—C12'—H12D108.5
C14—C13—C18118.8 (3)C18'—C13'—C14'119.2 (3)
C14—C13—C12119.8 (3)C18'—C13'—C12'120.5 (2)
C18—C13—C12121.4 (3)C14'—C13'—C12'120.2 (3)
C15—C14—C13120.7 (3)C15'—C14'—C13'120.2 (3)
C15—C14—H14119.7C15'—C14'—H14'119.9
C13—C14—H14119.7C13'—C14'—H14'119.9
C16—C15—C14120.4 (3)C16'—C15'—C14'120.3 (3)
C16—C15—H15119.8C16'—C15'—H15'119.9
C14—C15—H15119.8C14'—C15'—H15'119.9
C15—C16—C17119.3 (3)C17'—C16'—C15'119.4 (3)
C15—C16—H16120.3C17'—C16'—H16'120.3
C17—C16—H16120.3C15'—C16'—H16'120.3
C16—C17—C18120.3 (3)C18'—C17'—C16'120.2 (3)
C16—C17—H17119.9C18'—C17'—H17'119.9
C18—C17—H17119.9C16'—C17'—H17'119.9
C13—C18—C17120.5 (3)C13'—C18'—C17'120.7 (3)
C13—C18—H18119.8C13'—C18'—H18'119.7
C17—C18—H18119.8C17'—C18'—H18'119.7
C6—N1—C2—N30.7 (5)C6'—N1'—C2'—N3'1.0 (4)
N1—C2—N3—C4−0.4 (4)N1'—C2'—N3'—C4'−1.0 (4)
C2—N3—C4—C5−1.7 (4)C2'—N3'—C4'—C5'−0.4 (3)
C2—N3—C4—C9177.1 (3)C2'—N3'—C4'—C9'−178.8 (2)
N3—C4—C5—N7179.8 (2)N3'—C4'—C5'—N7'−178.6 (2)
C9—C4—C5—N70.8 (3)C9'—C4'—C5'—N7'0.1 (3)
N3—C4—C5—C63.3 (4)N3'—C4'—C5'—C6'1.7 (3)
C9—C4—C5—C6−175.7 (2)C9'—C4'—C5'—C6'−179.6 (2)
C2—N1—C6—C51.2 (4)C2'—N1'—C6'—C5'0.5 (3)
C2—N1—C6—Cl6−177.1 (2)C2'—N1'—C6'—Cl6'−179.70 (19)
N7—C5—C6—N1−178.2 (3)N7'—C5'—C6'—N1'178.7 (2)
C4—C5—C6—N1−3.0 (4)C4'—C5'—C6'—N1'−1.7 (3)
N7—C5—C6—Cl60.0 (4)N7'—C5'—C6'—Cl6'−1.0 (4)
C4—C5—C6—Cl6175.20 (18)C4'—C5'—C6'—Cl6'178.51 (17)
C6—C5—N7—C8174.8 (3)C6'—C5'—N7'—C8'179.5 (3)
C4—C5—N7—C8−0.7 (3)C4'—C5'—N7'—C8'−0.1 (3)
C6—C5—N7—C10−6.7 (4)C6'—C5'—N7'—C10'0.6 (4)
C4—C5—N7—C10177.9 (2)C4'—C5'—N7'—C10'−179.0 (2)
C5—N7—C8—C90.3 (3)C5'—N7'—C8'—C9'0.1 (3)
C10—N7—C8—C9−178.3 (2)C10'—N7'—C8'—C9'179.0 (2)
N7—C8—C9—C40.2 (3)N7'—C8'—C9'—C4'0.0 (3)
N7—C8—C9—Br9−177.46 (17)N7'—C8'—C9'—Br9'179.70 (17)
N3—C4—C9—C8−179.5 (3)N3'—C4'—C9'—C8'178.6 (2)
C5—C4—C9—C8−0.6 (3)C5'—C4'—C9'—C8'−0.1 (3)
N3—C4—C9—Br9−1.8 (4)N3'—C4'—C9'—Br9'−1.1 (4)
C5—C4—C9—Br9177.16 (17)C5'—C4'—C9'—Br9'−179.77 (17)
C8—N7—C10—O11116.7 (2)C8'—N7'—C10'—O11'107.8 (2)
C5—N7—C10—O11−61.7 (3)C5'—N7'—C10'—O11'−73.4 (3)
N7—C10—O11—C12−68.2 (3)N7'—C10'—O11'—C12'−77.3 (2)
C10—O11—C12—C13−172.6 (2)C10'—O11'—C12'—C13'−161.5 (2)
O11—C12—C13—C1491.4 (3)O11'—C12'—C13'—C18'−92.3 (3)
O11—C12—C13—C18−89.4 (3)O11'—C12'—C13'—C14'85.3 (3)
C18—C13—C14—C15−0.7 (4)C18'—C13'—C14'—C15'0.7 (4)
C12—C13—C14—C15178.6 (3)C12'—C13'—C14'—C15'−177.0 (3)
C13—C14—C15—C160.7 (4)C13'—C14'—C15'—C16'−0.3 (5)
C14—C15—C16—C17−0.2 (5)C14'—C15'—C16'—C17'−0.2 (5)
C15—C16—C17—C18−0.3 (5)C15'—C16'—C17'—C18'0.3 (4)
C14—C13—C18—C170.2 (4)C14'—C13'—C18'—C17'−0.6 (4)
C12—C13—C18—C17−179.0 (3)C12'—C13'—C18'—C17'177.0 (3)
C16—C17—C18—C130.3 (5)C16'—C17'—C18'—C13'0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···Br9i0.952.903.805 (3)159
C8—H8···N1ii0.952.463.394 (3)166
C8'—H8'···N1'ii0.952.483.410 (3)166
C10'—H10C···Br9iii0.992.783.700 (2)156
C15—H15···O11'iv0.952.603.497 (4)158
C10—H10A···Cg1v0.992.603.466 (3)146
C14—H14···Cg2iv0.952.873.794 (3)165

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x−1, y, z+1; (v) −x+1, −y+1, −z+1.

Table 3 C—N···Br interactions (Å, °)

C—N···BrC—NN···BrC···BrC—N···Br
C2—N3···Br9'vi1.320 (3)2.964 (2)3.457 (3)100.45 (17)
C2'—N3'···Brvii1.324 (3)3.043 (2)3.565 (3)102.17 (14)

Symmetry codes: (vi) x, y-1, z; (vii) 1+x, 1+y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2368).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clinch, K., Evans, G. B., Fröhlich, R. F. G., Gutierrez, J. A., Mason, J. M., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2010). Bioorg. Med. Chem. Submitted.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kubicki, M. (2004). Acta Cryst. B60, 333–342. [PubMed]
  • Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed.47, 6114–6127. [PubMed]
  • Sakore, T. D. & Sobell, H. M. (1969). J. Mol. Biol.43, 77–87. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography