PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o123.
Published online 2009 December 12. doi:  10.1107/S1600536809052969
PMCID: PMC2980173

(E)-N′-Benzyl­idene-5-methyl­isoxazole-4-carbohydrazide

Abstract

The mol­ecule of the title compound, C12H11N3O2, is approximately planar with an r.m.s. deviation of 0.0814 Å from the plane through all the non-H atoms. The dihedral angle formed by the benzene and isoxazole rings is 6.88 (16)°. The mol­ecular conformation is stabilized by an intra­molecular C—H(...)N hydrogen bond, forming an S(6) ring, and the mol­ecule displays an E configuration with respect to the C=N double bond. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds form centrosymmetric dimers which are further linked by weak C—H(...)N inter­actions augmented by very weak C—H(...)π contacts, forming layers parallel to (120).

Related literature

For the biological activity and coordination ability of hydrazone compounds, see: Molina et al. (1994 [triangle]); Khattab (2005 [triangle]); Reiter et al. (1985 [triangle]). For the biological properties of isoxazole derivatives, see: Stevens & Albizati (1984 [triangle]). For related structures, see: Fun et al. (2008 [triangle]); Wei et al. (2009 [triangle]); Khaledi et al. (2008 [triangle]). For reference bond-length parameters, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o123-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O2
  • M r = 229.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o123-efi1.jpg
  • a = 6.6562 (6) Å
  • b = 7.4874 (9) Å
  • c = 11.3051 (11) Å
  • α = 87.319 (8)°
  • β = 84.640 (7)°
  • γ = 87.878 (8)°
  • V = 560.04 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.22 × 0.19 × 0.08 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.979, T max = 0.992
  • 6763 measured reflections
  • 1936 independent reflections
  • 1219 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095
  • wR(F 2) = 0.302
  • S = 1.10
  • 1936 reflections
  • 159 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809052969/sj2706sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052969/sj2706Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. Y406049).

supplementary crystallographic information

Comment

A large number of hydrazone derivatives have been reported recently (Fun et al. 2008; Wei et al. 2009; Khaledi et al. 2008) and their biological activity (Molina et al. 1994; Khattab 2005) and coordination ability (Reiter et al.1985) have also been noted. Isoxazole compounds have also attracted much interest as they exhibit some fungicidal, plant-growth regulating and antibacterial activity (Stevens et al.1984). In order to study the properties of a new compound containing both the hydrazine and isoxazole groups, we synthesized the title compound and report its crystal structure here, Fig 1.

The title compound C12H11N3O2, is approximately planar (rms deviation 0.0814 from the plane through all non-hydrogen atoms)with a dihedral angle of 6.88 (16)°. between the C7···C12 benzene and C2···C4,N1,O1 isoxazole rings. The molecule displays an E configuration with respect to the C6═N3 double bond, with a C7—C6—N3—N2 torsion angle of -179.3 (3)°. The dihedral angle formed by the benzene and isoxazole rings is 2.457 (114)°. An intramolecular C—H···N hydrogen bond generates an S6 ring motif (Bernstein et al. 1997) and locks the molecule into a planar configuration. Bond lengths (Allen et al.,1987) and angles are unexceptional and similar to those found in related stuctures (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008).

In the crystal structure (Fig. 2), intermolecular N2—H2···O2 hydrogen bonds form centrosymmetric dimers. These are further linked by weak C1—H1B···N1 interactions augmented by very weak, inversion related C1—H1A···Cg1 contacts to form layers parallel to [120] (Cg1 is the centroid of the C7···C12 phenyl ring).

Experimental

Benzaldehyde (4.6 g,0.02 mol) and 5-methylisoxazole-4-carbonyl hydrazine (2.8 g, 0.02 mol) was mixed with glacial acetic acid (50 ml). The mixture was heated at 65° C for 3 h, the precipitate collected by filtration and washed with water, chloroform and ethanol. The product was recrystallized from ethanol, then dried under reduced pressure to give the title compound in 85% yield. Colourless, block-shaped crystals were obtained by slow evaporation of a dimethylformamide solution.

Refinement

The H atom bound to N2 was located in a difference Fourier map and refined freely with the N–H distance restrained to 0.90 Å. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso = 1.2 Uiso(C) or 1.5 Uiso(C) for methyl groups.

Figures

Fig. 1.
Molecular structure of of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H11N3O2Z = 2
Mr = 229.24F(000) = 240
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6562 (6) ÅCell parameters from 1711 reflections
b = 7.4874 (9) Åθ = 2.7–23.4°
c = 11.3051 (11) ŵ = 0.10 mm1
α = 87.319 (8)°T = 293 K
β = 84.640 (7)°Block, colourless
γ = 87.878 (8)°0.22 × 0.19 × 0.08 mm
V = 560.04 (10) Å3

Data collection

Bruker APEXII area-detector diffractometer1936 independent reflections
Radiation source: fine-focus sealed tube1219 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −7→7
Tmin = 0.979, Tmax = 0.992k = −8→8
6763 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.302H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
1936 reflections(Δ/σ)max = 0.004
159 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1634 (6)0.4088 (7)0.0931 (4)0.0719 (13)
H1A0.14340.53640.09320.108*
H1B0.04350.35280.12820.108*
H1C0.19220.37260.01280.108*
C20.3348 (5)0.3544 (5)0.1625 (3)0.0564 (11)
C30.5697 (5)0.2840 (6)0.2794 (3)0.0617 (11)
H30.63440.26290.34840.074*
C40.3642 (5)0.3410 (5)0.2793 (3)0.0504 (10)
C50.2072 (5)0.3862 (5)0.3748 (3)0.0522 (10)
C60.4198 (6)0.2675 (5)0.6388 (3)0.0569 (10)
H60.30920.30720.68820.068*
C70.5963 (6)0.1885 (5)0.6923 (3)0.0535 (10)
C80.7688 (6)0.1292 (6)0.6238 (4)0.0636 (11)
H80.77270.13740.54130.076*
C90.9325 (6)0.0591 (6)0.6767 (4)0.0726 (13)
H91.04660.02020.62990.087*
C100.9299 (7)0.0456 (6)0.7985 (4)0.0741 (13)
H101.0417−0.00170.83420.089*
C110.7604 (7)0.1027 (6)0.8669 (4)0.0785 (14)
H110.75690.09340.94930.094*
C120.5962 (7)0.1736 (6)0.8140 (4)0.0684 (12)
H120.48260.21220.86130.082*
H20.150 (5)0.408 (5)0.545 (3)0.075 (12)*
N10.6576 (5)0.2644 (5)0.1742 (3)0.0742 (12)
N20.2397 (4)0.3615 (4)0.4894 (3)0.0578 (9)
N30.4137 (5)0.2831 (4)0.5270 (3)0.0546 (9)
O10.5060 (4)0.3099 (4)0.0977 (2)0.0689 (10)
O20.0417 (4)0.4503 (4)0.3494 (2)0.0672 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.052 (2)0.111 (3)0.051 (2)0.007 (2)−0.0067 (19)0.012 (2)
C20.039 (2)0.072 (2)0.054 (2)0.0057 (17)0.0052 (16)0.0055 (18)
C30.041 (2)0.095 (3)0.046 (2)0.0154 (19)0.0029 (16)−0.0016 (19)
C40.0349 (19)0.065 (2)0.049 (2)0.0093 (15)0.0018 (15)0.0009 (16)
C50.037 (2)0.068 (2)0.051 (2)0.0094 (16)0.0003 (15)−0.0050 (17)
C60.045 (2)0.072 (2)0.051 (2)0.0075 (17)0.0048 (17)−0.0029 (17)
C70.050 (2)0.062 (2)0.047 (2)0.0037 (17)0.0017 (16)−0.0022 (16)
C80.054 (2)0.084 (3)0.051 (2)0.010 (2)0.0017 (18)−0.0024 (19)
C90.053 (2)0.086 (3)0.077 (3)0.017 (2)−0.002 (2)−0.003 (2)
C100.066 (3)0.080 (3)0.078 (3)0.015 (2)−0.021 (2)0.004 (2)
C110.078 (3)0.099 (3)0.057 (3)0.020 (3)−0.011 (2)0.002 (2)
C120.065 (3)0.087 (3)0.052 (2)0.016 (2)0.0003 (19)−0.004 (2)
N10.0411 (19)0.121 (3)0.057 (2)0.0189 (18)0.0007 (15)0.0025 (19)
N20.0372 (17)0.087 (2)0.0468 (19)0.0153 (15)0.0002 (13)−0.0059 (16)
N30.0408 (17)0.073 (2)0.0486 (19)0.0090 (14)−0.0024 (13)−0.0020 (14)
O10.0457 (16)0.113 (2)0.0448 (16)0.0136 (14)0.0042 (12)0.0022 (14)
O20.0419 (16)0.104 (2)0.0547 (17)0.0250 (14)−0.0063 (12)−0.0128 (14)

Geometric parameters (Å, °)

C1—C21.478 (5)C7—C121.375 (5)
C1—H1A0.9600C7—C81.394 (5)
C1—H1B0.9600C8—C91.368 (5)
C1—H1C0.9600C8—H80.9300
C2—O11.337 (4)C9—C101.374 (6)
C2—C41.352 (5)C9—H90.9300
C3—N11.288 (5)C10—C111.373 (6)
C3—C41.417 (5)C10—H100.9300
C3—H30.9300C11—C121.373 (6)
C4—C51.473 (5)C11—H110.9300
C5—O21.239 (4)C12—H120.9300
C5—N21.336 (5)N1—O11.412 (4)
C6—N31.269 (5)N2—N31.373 (4)
C6—C71.464 (5)N2—H20.902 (10)
C6—H60.9300
C2—C1—H1A109.5C8—C7—C6122.2 (3)
C2—C1—H1B109.5C9—C8—C7120.7 (4)
H1A—C1—H1B109.5C9—C8—H8119.7
C2—C1—H1C109.5C7—C8—H8119.7
H1A—C1—H1C109.5C8—C9—C10120.6 (4)
H1B—C1—H1C109.5C8—C9—H9119.7
O1—C2—C4109.7 (3)C10—C9—H9119.7
O1—C2—C1115.1 (3)C11—C10—C9119.2 (4)
C4—C2—C1135.3 (4)C11—C10—H10120.4
N1—C3—C4113.2 (3)C9—C10—H10120.4
N1—C3—H3123.4C12—C11—C10120.3 (4)
C4—C3—H3123.4C12—C11—H11119.9
C2—C4—C3103.5 (3)C10—C11—H11119.9
C2—C4—C5123.5 (3)C11—C12—C7121.3 (4)
C3—C4—C5133.0 (3)C11—C12—H12119.4
O2—C5—N2118.7 (3)C7—C12—H12119.4
O2—C5—C4119.9 (3)C3—N1—O1104.4 (3)
N2—C5—C4121.4 (3)C5—N2—N3123.3 (3)
N3—C6—C7121.8 (3)C5—N2—H2119 (3)
N3—C6—H6119.1N3—N2—H2118 (3)
C7—C6—H6119.1C6—N3—N2115.5 (3)
C12—C7—C8117.9 (4)C2—O1—N1109.3 (3)
C12—C7—C6119.8 (4)
O1—C2—C4—C30.0 (4)C7—C8—C9—C100.0 (7)
C1—C2—C4—C3−178.5 (5)C8—C9—C10—C110.3 (7)
O1—C2—C4—C5178.0 (3)C9—C10—C11—C12−0.4 (8)
C1—C2—C4—C5−0.5 (8)C10—C11—C12—C70.3 (8)
N1—C3—C4—C20.0 (5)C8—C7—C12—C110.1 (7)
N1—C3—C4—C5−177.7 (4)C6—C7—C12—C11−179.0 (4)
C2—C4—C5—O2−4.5 (6)C4—C3—N1—O10.0 (5)
C3—C4—C5—O2172.8 (4)O2—C5—N2—N3176.6 (3)
C2—C4—C5—N2176.3 (4)C4—C5—N2—N3−4.2 (6)
C3—C4—C5—N2−6.4 (7)C7—C6—N3—N2−179.3 (3)
N3—C6—C7—C12−179.8 (4)C5—N2—N3—C6−179.1 (4)
N3—C6—C7—C81.2 (6)C4—C2—O1—N10.0 (5)
C12—C7—C8—C9−0.2 (7)C1—C2—O1—N1178.8 (3)
C6—C7—C8—C9178.8 (4)C3—N1—O1—C20.0 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N30.932.392.893 (5)114
N2—H2···O2i0.90 (1)1.98 (1)2.867 (4)170 (4)
C1—H1B···N1ii0.962.673.598 (6)162
C1—H1A···Cg1iii0.963.354.136 (7)140

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2706).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [PMC free article] [PubMed]
  • Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. [PMC free article] [PubMed]
  • Khattab, S. N. (2005). Molecules, 10, 1218–1228. [PubMed]
  • Molina, P., Almendros, O. & Fresneda, P. M. (1994). Tetrahedron, 50, 2241–2243.
  • Reiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem.22, 385–394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett 25, 4587–4591.
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography