PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o16.
Published online 2009 December 4. doi:  10.1107/S1600536809051137
PMCID: PMC2980169

3-(3-Bromo­benz­yl)isoquinolin-1(2H)-one

Abstract

In the title compound, C16H12BrNO, the ring systems subtend an inter­planar dihedral angle of 75.95 (3)°. In the crystal packing, mol­ecules are linked to form centrosymmetric pairs by pairs of classical N—H(...)O hydrogen bonds.

Related literature

For the biological and pharmaceutical properties of isoquinolin-1(2H)-one derivatives, see: Chern & Li (2004 [triangle]); Coelho et al. (2003 [triangle]); Jayaraman et al. (2000 [triangle]); Thompson & Kallmerten (1990 [triangle]); Ukita et al. (2001 [triangle]). For the structure of a related isochromene derivative, see: Ali et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o16-scheme1.jpg

Experimental

Crystal data

  • C16H12BrNO
  • M r = 314.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o16-efi1.jpg
  • a = 4.5858 (4) Å
  • b = 9.4976 (7) Å
  • c = 14.8296 (11) Å
  • α = 88.698 (6)°
  • β = 83.829 (6)°
  • γ = 86.529 (6)°
  • V = 640.88 (9) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 4.28 mm−1
  • T = 100 K
  • 0.16 × 0.07 × 0.07 mm

Data collection

  • Oxford Diffraction Nova A diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.817, T max = 1.000
  • 9267 measured reflections
  • 2642 independent reflections
  • 2586 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.068
  • S = 0.90
  • 2642 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051137/rz2396sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051137/rz2396Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TMB is grateful to the Higher Education Commission of Pakistan for financial support for a PhD program.

supplementary crystallographic information

Comment

Isoquinolin-1(2H)-one derivatives are an important class of heterocyclic compounds with substantial biological activities (Jayaraman et al., 2000) that can be found in naturally occurring products of medicinal interest (Ukita et al., 2001) and synthetic pharmaceuticals such as thalifoline (Chern & Li, 2004), pancratistain and lycoricidine (Thompson & Kallmerten, 1990). In addition, isoquinolin-1(2H)-ones are versatile building blocks for the total synthesis of natural isocarbostyril alkaloids (Coelho et al., 2003). Bearing in mind the pharmaceutical importance of this class of compounds, the title compound, an isoquinolinone derivative containing a 3-bromobenzyl substituent, has been synthesized and its crystal structure is reported here. We have also determined the structure of the analogous isochromene derivative with an oxygen atom replacing the NH group (Ali et al., 2009).

The molecule of the title compound is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The atom sequence N—C2—C10—C11 displays a trans geometry, with a torsion angle of -178.69 (14). The two planar ring systems (including all non-hydrogen substituents) are both planar to within r.m.s. deviations of 0.01 Å and subtend an interplanar angle of 75.95 (3)°. As in the analogous isochromene derivative (Ali et al., 2009), several bond angles depart substantially from ideal values, e.g. C1—N—C2 125.36 (14), N—C2—C10 113.15 (14), C2—C2—C10 126.87 (15), C2—C10—C11 114.88 (14)°.

The packing diagram (Fig. 2) shows the molecules to be linked by classical hydrogen bonds N—H···OC across inversion centres.

Experimental

3-(3'-Bromobenzyl)isocoumarin (1 g, 0.0032 mol) in 2-ethoxyethanol was saturated with ammonia gas for 2 h, forming a pale yellow solution that was refluxed for 2 h. The solvent was evaporated under reduced pressure, yielding a fluffy solid. This that was purified by column chromatography using 50% ethyl acetate/petroleum ether as an eluent to afford the title compound (yield 61%; m.p. 228–230 °C). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement

The H atom bount to the nitrogen atom was refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Packing diagram viewed parallel to the x axis. Hydrogen bonds are indicated by dashed lines.
Fig. 3.
The formation of the title compound.

Crystal data

C16H12BrNOZ = 2
Mr = 314.18F(000) = 316
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 4.5858 (4) ÅCell parameters from 9315 reflections
b = 9.4976 (7) Åθ = 3.0–75.6°
c = 14.8296 (11) ŵ = 4.28 mm1
α = 88.698 (6)°T = 100 K
β = 83.829 (6)°Prism, colourless
γ = 86.529 (6)°0.16 × 0.07 × 0.07 mm
V = 640.88 (9) Å3

Data collection

Oxford Diffraction Nova A diffractometer2642 independent reflections
Radiation source: Nova (Cu) X-ray Source2586 reflections with I > 2σ(I)
mirrorRint = 0.021
Detector resolution: 10.3543 pixels mm-1θmax = 75.8°, θmin = 3.0°
ω scanh = −5→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)k = −11→11
Tmin = 0.817, Tmax = 1.000l = −18→18
9267 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.90w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8338P] where P = (Fo2 + 2Fc2)/3
2642 reflections(Δ/σ)max = 0.016
176 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)- 3.3521 (0.0017) x + 6.0480 (0.0040) y - 1.1834 (0.0042) z = 2.8164 (0.0038)* 0.0154 (0.0011) C10 * -0.0101 (0.0014) C11 * -0.0109 (0.0014) C12 * -0.0098 (0.0015) C13 * 0.0036 (0.0015) C14 * 0.0074 (0.0013) C15 * -0.0053 (0.0014) C16 * 0.0097 (0.0008) BrRms deviation of fitted atoms = 0.00963.3793 (0.0010) x + 4.6226 (0.0023) y + 8.8098 (0.0043) z = 6.7949 (0.0012)Angle to previous plane (with approximate e.s.d.) = 75.95 (0.03)* 0.0161 (0.0013) C10 * -0.0154 (0.0013) N * 0.0007 (0.0011) O * -0.0018 (0.0014) C1 * -0.0080 (0.0015) C2 * -0.0054 (0.0015) C3 * 0.0009 (0.0015) C4 * -0.0003 (0.0014) C5 * -0.0016 (0.0014) C6 * -0.0046 (0.0015) C7 * 0.0104 (0.0015) C8 * 0.0089 (0.0015) C9Rms deviation of fitted atoms = 0.0082
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.41731 (5)0.68583 (2)−0.065128 (12)0.03136 (9)
N0.2730 (3)0.49455 (15)0.40535 (10)0.0155 (3)
H010.131 (5)0.545 (3)0.4306 (17)0.025 (6)*
O0.2033 (3)0.33201 (12)0.51915 (8)0.0187 (2)
C10.3423 (4)0.36850 (17)0.44644 (11)0.0159 (3)
C20.4140 (4)0.54534 (17)0.32544 (11)0.0155 (3)
C30.6381 (4)0.46744 (18)0.28064 (11)0.0168 (3)
H30.73470.50180.22530.020*
C40.7296 (4)0.33229 (17)0.31716 (11)0.0162 (3)
C50.9617 (4)0.24635 (19)0.27310 (12)0.0194 (3)
H51.06300.27780.21780.023*
C61.0421 (4)0.11699 (19)0.30999 (12)0.0216 (4)
H61.19880.06030.27980.026*
C70.8955 (4)0.06803 (18)0.39159 (12)0.0216 (4)
H70.9509−0.02170.41600.026*
C80.6701 (4)0.15123 (18)0.43607 (12)0.0190 (3)
H80.57210.11920.49180.023*
C90.5853 (4)0.28290 (17)0.39932 (11)0.0159 (3)
C100.2940 (4)0.68958 (18)0.29851 (12)0.0194 (3)
H10A0.31690.75600.34740.023*
H10B0.08110.68530.29370.023*
C110.4378 (4)0.74776 (17)0.21028 (12)0.0170 (3)
C120.3752 (4)0.69677 (18)0.12761 (12)0.0201 (3)
H120.24380.62350.12610.024*
C130.5061 (4)0.75386 (19)0.04767 (12)0.0211 (3)
C140.6969 (4)0.8617 (2)0.04693 (13)0.0237 (4)
H140.78360.9000−0.00860.028*
C150.7580 (4)0.91238 (19)0.12966 (14)0.0247 (4)
H150.88780.98640.13090.030*
C160.6308 (4)0.85559 (18)0.21038 (12)0.0195 (3)
H160.67580.89060.26650.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.04174 (14)0.03719 (14)0.01477 (12)0.00054 (9)−0.00234 (8)−0.00284 (8)
N0.0173 (7)0.0153 (6)0.0130 (6)0.0004 (5)0.0017 (5)−0.0002 (5)
O0.0218 (6)0.0182 (6)0.0152 (6)−0.0004 (4)0.0016 (5)0.0024 (4)
C10.0177 (8)0.0156 (7)0.0148 (8)−0.0021 (6)−0.0031 (6)−0.0007 (6)
C20.0184 (8)0.0156 (7)0.0130 (7)−0.0029 (6)−0.0020 (6)−0.0008 (6)
C30.0186 (8)0.0182 (8)0.0134 (8)−0.0027 (6)−0.0002 (6)0.0001 (6)
C40.0166 (7)0.0173 (8)0.0152 (8)−0.0021 (6)−0.0031 (6)−0.0027 (6)
C50.0186 (8)0.0226 (8)0.0168 (8)−0.0003 (6)−0.0013 (6)−0.0030 (6)
C60.0211 (8)0.0228 (8)0.0212 (9)0.0041 (7)−0.0050 (7)−0.0066 (7)
C70.0270 (9)0.0175 (8)0.0211 (9)0.0031 (7)−0.0083 (7)−0.0022 (6)
C80.0231 (8)0.0175 (8)0.0170 (8)−0.0015 (6)−0.0042 (6)−0.0003 (6)
C90.0172 (8)0.0158 (7)0.0151 (8)−0.0013 (6)−0.0036 (6)−0.0014 (6)
C100.0243 (8)0.0172 (8)0.0156 (8)0.0019 (6)0.0015 (7)0.0007 (6)
C110.0193 (8)0.0136 (7)0.0166 (8)0.0037 (6)0.0013 (6)0.0014 (6)
C120.0229 (8)0.0175 (8)0.0193 (8)−0.0007 (6)−0.0004 (7)0.0001 (6)
C130.0250 (9)0.0220 (8)0.0151 (8)0.0051 (7)−0.0005 (7)−0.0001 (6)
C140.0246 (9)0.0243 (9)0.0202 (9)0.0016 (7)0.0045 (7)0.0073 (7)
C150.0250 (9)0.0205 (8)0.0280 (10)−0.0043 (7)0.0009 (7)0.0044 (7)
C160.0213 (8)0.0179 (8)0.0189 (8)0.0012 (6)−0.0016 (6)−0.0003 (6)

Geometric parameters (Å, °)

Br—C131.8997 (18)C12—C131.384 (2)
N—C11.367 (2)C13—C141.386 (3)
N—C21.379 (2)C14—C151.390 (3)
O—C11.245 (2)C15—C161.387 (3)
C1—C91.463 (2)N—H010.85 (3)
C2—C31.352 (2)C3—H30.9500
C2—C101.507 (2)C5—H50.9500
C3—C41.438 (2)C6—H60.9500
C4—C91.407 (2)C7—H70.9500
C4—C51.413 (2)C8—H80.9500
C5—C61.379 (3)C10—H10A0.9900
C6—C71.404 (3)C10—H10B0.9900
C7—C81.380 (3)C12—H120.9500
C8—C91.403 (2)C14—H140.9500
C10—C111.509 (2)C15—H150.9500
C11—C161.394 (2)C16—H160.9500
C11—C121.393 (2)
C1—N—C2125.36 (14)C14—C15—C16120.44 (17)
O—C1—N120.74 (15)C15—C16—C11120.83 (17)
O—C1—C9123.72 (15)C1—N—H01117.5 (16)
N—C1—C9115.54 (15)C2—N—H01117.1 (16)
C3—C2—N119.97 (15)C2—C3—H3120.2
C3—C2—C10126.87 (15)C4—C3—H3120.2
N—C2—C10113.15 (14)C6—C5—H5119.8
C2—C3—C4119.66 (15)C4—C5—H5119.8
C9—C4—C5118.38 (15)C5—C6—H6119.6
C9—C4—C3119.57 (15)C7—C6—H6119.6
C5—C4—C3122.06 (15)C8—C7—H7120.2
C6—C5—C4120.36 (16)C6—C7—H7120.2
C5—C6—C7120.90 (16)C7—C8—H8119.9
C8—C7—C6119.53 (16)C9—C8—H8119.9
C7—C8—C9120.25 (17)C2—C10—H10A108.5
C8—C9—C4120.57 (16)C11—C10—H10A108.5
C8—C9—C1119.53 (15)C2—C10—H10B108.5
C4—C9—C1119.89 (15)C11—C10—H10B108.5
C2—C10—C11114.88 (14)H10A—C10—H10B107.5
C16—C11—C12119.00 (16)C13—C12—H12120.3
C16—C11—C10120.36 (16)C11—C12—H12120.3
C12—C11—C10120.63 (15)C13—C14—H14120.9
C13—C12—C11119.41 (16)C15—C14—H14120.9
C12—C13—C14122.10 (17)C16—C15—H15119.8
C12—C13—Br119.42 (14)C14—C15—H15119.8
C14—C13—Br118.46 (13)C15—C16—H16119.6
C13—C14—C15118.22 (16)C11—C16—H16119.6
C2—N—C1—O179.43 (15)O—C1—C9—C80.6 (3)
C2—N—C1—C9−0.6 (2)N—C1—C9—C8−179.41 (15)
C1—N—C2—C31.0 (3)O—C1—C9—C4179.80 (15)
C1—N—C2—C10−178.22 (15)N—C1—C9—C4−0.2 (2)
N—C2—C3—C4−0.5 (2)C3—C2—C10—C112.2 (3)
C10—C2—C3—C4178.55 (16)N—C2—C10—C11−178.69 (14)
C2—C3—C4—C9−0.2 (2)C2—C10—C11—C16−106.28 (18)
C2—C3—C4—C5179.80 (16)C2—C10—C11—C1275.1 (2)
C9—C4—C5—C60.4 (2)C16—C11—C12—C130.1 (2)
C3—C4—C5—C6−179.64 (16)C10—C11—C12—C13178.82 (15)
C4—C5—C6—C70.1 (3)C11—C12—C13—C14−0.6 (3)
C5—C6—C7—C8−0.8 (3)C11—C12—C13—Br−179.29 (12)
C6—C7—C8—C90.9 (3)C12—C13—C14—C150.4 (3)
C7—C8—C9—C4−0.4 (3)Br—C13—C14—C15179.16 (13)
C7—C8—C9—C1178.80 (15)C13—C14—C15—C160.1 (3)
C5—C4—C9—C8−0.2 (2)C14—C15—C16—C11−0.6 (3)
C3—C4—C9—C8179.78 (15)C12—C11—C16—C150.4 (3)
C5—C4—C9—C1−179.46 (15)C10—C11—C16—C15−178.27 (16)
C3—C4—C9—C10.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H01···Oi0.85 (3)1.96 (3)2.8036 (19)176 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2396).

References

  • Ali, F. I., Babar, T. M., Rama, N. H. & Jones, P. G. (2009). Acta Cryst. E65, o2511. [PMC free article] [PubMed]
  • Chern, M. S. & Li, W. R. (2004). Tetrahedron Lett.45, 8323–8326.
  • Coelho, F., Veronese, D., Lopes, E. C. S. & Rossi, R. C. (2003). Tetrahedron Lett.44, 5731–5735.
  • Jayaraman, M., Fox, B. M., Hollingshead, M., Kohlhagen, G., Pommier, Y. & Cushman, M. (2000). J. Med. Chem.43, 3688–3698. [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP Siemens Analytical X-ray Instruments, Madison, USA.
  • Thompson, R. C. & Kallmerten, J. (1990). J. Org. Chem.55, 6076–6078.
  • Ukita, T., Nakamura, Y., Kubo, A., Yamamoto, Y., Moritani, Y., Saruta, K., Higashijoma, T., Kotera, J., Takagi, M., Kikkawa, K. & Omori, K. (2001). J. Med. Chem.44, 2204–2218. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography