PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m70.
Published online 2009 December 16. doi:  10.1107/S160053680905346X
PMCID: PMC2980167

Aqua­(6,6′-oxydipicolinato-κ2 O,N,N′,O′)copper(II)

Abstract

In the title complex, [Cu(C12H6N2O5)(H2O)], the CuII ion is in a slightly distorted square-pyramidal coordination environment with two N and two O atoms from a 6,6′-oxydipicolinate ligand occupying the basal plane and a water ligand in the apical site. The dihedral angle between the two pyridine rings is 5.51 (6)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link mol­ecules into a two-dimensional network. In addition, weak inter­molecular C—H(...)O and C=O(lone pair)(...)π(ring) inter­actions, with O(...)ring-centroid distances of 3.697 (4) and 3.094 (4) Å, provide additional stabilization.

Related literature

For inter­molecular inter­actions, see: Choudhury et al. (2008 [triangle]). For the applications of picolinic acid compounds, see: Mann et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m70-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H6N2O5)(H2O)]
  • M r = 339.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m70-efi1.jpg
  • a = 7.2487 (16) Å
  • b = 21.055 (4) Å
  • c = 8.2269 (17) Å
  • β = 110.201 (9)°
  • V = 1178.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.89 mm−1
  • T = 296 K
  • 0.40 × 0.35 × 0.30 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.519, T max = 0.602
  • 6790 measured reflections
  • 2074 independent reflections
  • 1806 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.110
  • S = 1.18
  • 2074 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680905346X/lh2964sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905346X/lh2964Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Picolinic acid compounds play an vital role in the development of coordination chemistry related to catalysis, magnetism and molecular architectures (Mann et al., 1992). As part of our studies on the synthesis and characterization of these types of compounds, we report here the synthesis and crystal structure of the title compound (I).

The molecular structure of the title compound (I) is shown in Fig. 1. The CuII ion is in a slightly distorted square-pyramidal coordination environment with two N and two O atoms from a 6,6'-oxydipicolinato ligand occupying the basal plane and one water ligand in the apical site. The dihedral angle between the two pyridine rings is 5.51 (6)°. The delocalization of electrons within the carboxylate groups is reflected in the C═O lengths. In the crystal structure, there are intermolecular O—H···O hydrogen bonds involving the carboxyl oxygen atoms and coordinated water molecules (Fig. 2) forming a two-dimensional network (see Table 1 for hydrogen bond geometries). In addition to weak intermolecular C-H···O interactions, further stabilization appears to be provided by weak C=O(lone pair)···π(ring) stacking interactions (Choudhury et al., 2008). The relevant distances are C12—O4···Cg1i = 3.697 (4) Å, Cg1 is the centroid of the ring defined by the atoms N1/C7-C11 [symmetry code: (i) -x, -y, 2-z] and the angle C12—O4···Cg1i is 98.95 (34)°; C1—O2···Cg2ii = 3.094 (4) Å, Cg2 is the centroid of the ring defined by the atoms N2/C2-C6 [symmetry code: (ii) 0.5+x, 0.5-y, 0.5+z] and the angle C1—O2···Cg2ii is 115.48 (4)° (see Fig. 3).

Experimental

All reagents were available commercially and were used without further purification. 6,6'-Oxydipicolinic acid (260 mg) was added to 1 mmol (132 mg) of CuCl2 in 10 ml of water. The suspension was stirred for 4 h and filtered. After leaving the filtrate in air for one week, blue block-shaped crystals of (I) were formed. The crystals were isolated, washed with water three times and dried in a vacuum desicator using silica gel (Yield 75%). Elemental analysis: found C, 42.05; H, 2.96; N, 8.18%; calc. for C12H8CuN2O6; C, 42.17; H, 2.95; N, 8.20%.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined using a riding-model approximation with C–H = 0.93 Å, and Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were found in difference Fourier maps and included as riding with O—H = 0.85Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The molecular structure of (I) showing 50% proability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
Fig. 3.
Part of the crystal structure of (I) showing C=O(lone pair)···π(ring) stacking interactions as dashed lines.

Crystal data

[Cu(C12H6N2O5)(H2O)]F(000) = 684
Mr = 339.74Dx = 1.915 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2501 reflections
a = 7.2487 (16) Åθ = 2.8–27.5°
b = 21.055 (4) ŵ = 1.89 mm1
c = 8.2269 (17) ÅT = 296 K
β = 110.201 (9)°Block, blue
V = 1178.4 (4) Å30.40 × 0.35 × 0.30 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer2074 independent reflections
Radiation source: fine-focus sealed tube1806 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.519, Tmax = 0.602k = −24→24
6790 measured reflectionsl = −9→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0671P)2 + 0.1209P] where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.33165 (5)0.109980 (17)0.96148 (4)0.02725 (18)
O30.2907 (3)0.05841 (10)1.1417 (3)0.0327 (5)
N20.4163 (4)0.14875 (12)0.7848 (3)0.0265 (6)
O10.4318 (3)0.18774 (11)1.0899 (3)0.0336 (5)
O50.3272 (4)0.06644 (11)0.5777 (3)0.0368 (6)
N10.2837 (4)0.03042 (12)0.8315 (3)0.0254 (6)
O40.2158 (4)−0.04040 (11)1.1935 (3)0.0409 (6)
O20.5275 (4)0.28511 (11)1.0481 (3)0.0410 (6)
C120.2463 (4)0.00062 (15)1.1003 (4)0.0268 (7)
C10.4833 (5)0.23022 (15)1.0031 (4)0.0297 (7)
O60.0171 (3)0.14739 (11)0.8390 (3)0.0382 (6)
H6A−0.01200.16230.73730.046*
H6B−0.05210.11440.80100.046*
C20.4850 (5)0.20891 (14)0.8261 (4)0.0284 (7)
C50.4587 (5)0.15934 (17)0.5117 (4)0.0342 (8)
H50.44730.14190.40480.041*
C110.2346 (4)−0.01770 (15)0.9187 (4)0.0258 (7)
C100.1814 (5)−0.07640 (16)0.8462 (4)0.0348 (8)
H100.1481−0.10890.90750.042*
C60.4036 (5)0.12555 (15)0.6311 (4)0.0298 (7)
C80.2272 (5)−0.03744 (16)0.5894 (4)0.0358 (8)
H80.2241−0.04300.47630.043*
C70.2808 (5)0.02011 (15)0.6721 (4)0.0280 (7)
C90.1787 (5)−0.08608 (16)0.6763 (4)0.0374 (8)
H90.1441−0.12550.62350.045*
C30.5440 (5)0.24521 (16)0.7162 (4)0.0366 (8)
H30.59190.28610.74700.044*
C40.5311 (5)0.21967 (17)0.5561 (5)0.0407 (9)
H40.57150.24350.47930.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0409 (3)0.0226 (3)0.0216 (3)−0.00293 (15)0.01511 (19)−0.00212 (14)
O30.0481 (14)0.0300 (13)0.0229 (11)−0.0044 (10)0.0161 (10)−0.0017 (9)
N20.0309 (14)0.0253 (14)0.0242 (13)0.0005 (11)0.0105 (10)0.0002 (11)
O10.0470 (14)0.0288 (12)0.0267 (11)−0.0051 (10)0.0150 (10)−0.0053 (9)
O50.0589 (16)0.0326 (13)0.0237 (11)−0.0090 (11)0.0203 (11)−0.0052 (10)
N10.0327 (14)0.0225 (13)0.0220 (12)−0.0009 (11)0.0108 (10)−0.0010 (10)
O40.0594 (16)0.0381 (14)0.0303 (12)−0.0093 (12)0.0219 (11)0.0034 (11)
O20.0495 (15)0.0263 (13)0.0471 (15)−0.0071 (10)0.0166 (12)−0.0104 (11)
C120.0283 (16)0.0302 (18)0.0215 (15)0.0000 (13)0.0082 (13)0.0033 (13)
C10.0275 (16)0.0285 (19)0.0323 (16)0.0031 (13)0.0094 (13)−0.0018 (14)
O60.0378 (13)0.0339 (13)0.0400 (13)0.0015 (10)0.0098 (11)0.0019 (11)
C20.0286 (16)0.0233 (16)0.0310 (16)−0.0001 (13)0.0075 (13)0.0014 (13)
C50.0361 (18)0.040 (2)0.0298 (17)0.0017 (14)0.0164 (14)0.0037 (14)
C110.0289 (16)0.0250 (16)0.0234 (15)0.0026 (12)0.0087 (12)0.0014 (12)
C100.048 (2)0.0268 (18)0.0324 (18)−0.0054 (14)0.0167 (15)−0.0001 (14)
C60.0361 (18)0.0305 (18)0.0246 (16)0.0025 (14)0.0130 (13)0.0022 (13)
C80.046 (2)0.036 (2)0.0277 (16)−0.0008 (15)0.0161 (15)−0.0095 (15)
C70.0348 (17)0.0279 (17)0.0227 (15)0.0012 (13)0.0117 (13)−0.0001 (13)
C90.050 (2)0.0285 (18)0.0346 (18)−0.0074 (16)0.0160 (16)−0.0114 (15)
C30.0374 (19)0.0310 (18)0.042 (2)−0.0050 (15)0.0142 (15)0.0034 (16)
C40.043 (2)0.042 (2)0.042 (2)−0.0028 (16)0.0217 (16)0.0123 (17)

Geometric parameters (Å, °)

Cu1—O31.942 (2)O6—H6A0.8500
Cu1—N21.942 (3)O6—H6B0.8501
Cu1—O11.948 (2)C2—C31.361 (5)
Cu1—N11.953 (2)C5—C41.375 (5)
Cu1—O62.290 (2)C5—C61.379 (4)
O3—C121.275 (4)C5—H50.9300
N2—C61.328 (4)C11—C101.368 (5)
N2—C21.361 (4)C10—C91.406 (5)
O1—C11.278 (4)C10—H100.9300
O5—C71.359 (4)C8—C91.363 (5)
O5—C61.371 (4)C8—C71.378 (5)
N1—C71.323 (4)C8—H80.9300
N1—C111.358 (4)C9—H90.9300
O4—C121.225 (4)C3—C41.395 (5)
O2—C11.222 (4)C3—H30.9300
C12—C111.517 (4)C4—H40.9300
C1—C21.528 (4)
O3—Cu1—N2167.91 (10)N2—C2—C1112.9 (3)
O3—Cu1—O1100.51 (9)C3—C2—C1125.2 (3)
N2—Cu1—O184.13 (10)C4—C5—C6117.7 (3)
O3—Cu1—N183.87 (9)C4—C5—H5121.1
N2—Cu1—N189.62 (10)C6—C5—H5121.1
O1—Cu1—N1168.68 (10)N1—C11—C10122.0 (3)
O3—Cu1—O697.86 (10)N1—C11—C12113.2 (3)
N2—Cu1—O692.86 (10)C10—C11—C12124.8 (3)
O1—Cu1—O694.45 (9)C11—C10—C9118.0 (3)
N1—Cu1—O695.29 (10)C11—C10—H10121.0
C12—O3—Cu1114.87 (19)C9—C10—H10121.0
C6—N2—C2118.7 (3)N2—C6—O5121.8 (3)
C6—N2—Cu1128.4 (2)N2—C6—C5123.1 (3)
C2—N2—Cu1112.8 (2)O5—C6—C5115.1 (3)
C1—O1—Cu1114.29 (19)C9—C8—C7118.8 (3)
C7—O5—C6128.3 (2)C9—C8—H8120.6
C7—N1—C11118.9 (3)C7—C8—H8120.6
C7—N1—Cu1128.5 (2)N1—C7—O5121.8 (3)
C11—N1—Cu1112.4 (2)N1—C7—C8122.6 (3)
O4—C12—O3126.1 (3)O5—C7—C8115.6 (3)
O4—C12—C11118.5 (3)C8—C9—C10119.7 (3)
O3—C12—C11115.4 (3)C8—C9—H9120.2
O2—C1—O1126.1 (3)C10—C9—H9120.2
O2—C1—C2118.6 (3)C2—C3—C4118.5 (3)
O1—C1—C2115.3 (3)C2—C3—H3120.8
Cu1—O6—H6A115.6C4—C3—H3120.8
Cu1—O6—H6B104.6C5—C4—C3120.1 (3)
H6A—O6—H6B91.5C5—C4—H4119.9
N2—C2—C3121.9 (3)C3—C4—H4119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.932.313.229 (4)171
C9—H9···O2ii0.932.423.331 (4)165
C4—H4···O6iii0.932.543.303 (4)140
O6—H6B···O4iv0.851.972.772 (3)157
O6—H6A···O2v0.852.012.807 (3)156

Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y, −z+2; (v) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2964).

References

  • Choudhury, S. R., Gamez, P., Robertazzi, A., Chen, C. Y., Lee, H. M. & Mukhopadhyay, S. (2008). Cryst. Growth Des.8, 3773–3784.
  • Mann, Y., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem.27, 633–639.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography