PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m61–m62.
Published online 2009 December 12. doi:  10.1107/S1600536809052714
PMCID: PMC2980161

Tetra-μ-benzoato-bis­{[4-(pyrrolidin-1-yl)pyridine]zinc(II)}

Abstract

The central part of the title centrosymmetric dinuclear complex, [Zn2(C7H5O2)4(C9H12N2)2], has a paddle-wheel conformation with four benzoate ligands bridging two symmetry-related ZnII ions. The distorted square-pyramidal coordination environment around the ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The Zn(...)Zn separation of 2.9826 (12) Å does not represent a formal direct metal–metal bond. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal O atoms. Two of the C atoms of the pyrrolidine ring are disordered over two sites with refined occupancies of 0.53 (2) and 0.47 (2).

Related literature

For crystal structures containing the [Zn2(O2CPh)4] unit, see: Necefoglu et al. (2002 [triangle]); Zeleňák et al. (2004 [triangle]); Karmakar et al. (2006 [triangle]); Ohmura et al. (2005 [triangle]). For the crystal structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methyl­quinoline, 3-methyl­quinoline, di-2-pyridyl ketone and trans-1-(2-pyrid­yl)-2-(4-pyrid­yl)ethyl­ene, see: Lee et al. (2008 [triangle]); Yu et al. (2008 [triangle], 2009 [triangle]); Park et al. (2008 [triangle]); Shin et al. (2009 [triangle]); Song et al. (2009 [triangle]). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008 [triangle]); Parkin (2004 [triangle]); Tshuva & Lippard (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m61-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C7H5O2)4(C9H12N2)2]
  • M r = 911.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m61-efi1.jpg
  • a = 11.0021 (11) Å
  • b = 11.4303 (11) Å
  • c = 16.9508 (16) Å
  • β = 93.869 (2)°
  • V = 2126.8 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.19 mm−1
  • T = 293 K
  • 0.08 × 0.08 × 0.01 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.909, T max = 0.988
  • 11271 measured reflections
  • 4159 independent reflections
  • 2284 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.179
  • S = 0.90
  • 4159 reflections
  • 270 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052714/lh2962sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052714/lh2962Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from Korea Ministry Environment ‘ET-Human resource development Project’ and the Korean Science & Engineering Foundation (2009–0074066) is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, great attention has been paid to transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). Some biologically active molecules that have potential interactions with transition metal ions are amino acids, proteins, sugars, nucleotides, fulvic acids and humic acids. In particular, the study on the interaction of transition metal ions with fulvic acids and humic acids, mainly found in soil, is being extensively investigated. As models to examine these interactions we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridylketone, andtrans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Yu, et al., 2009; Song, et al., 2009). The related paddle-wheel type structures for Zn complexes have been previouly reported (Necefoglu, et al., 2002; Zeleňák, et al.,2004; Kamakar, et al., 2006; Ohmura, et al., 2005). In this work, we have employed zinc(II) benzoate as a building block and 4-(pyrrolidin-1-yl)pyridine as a ligand. We report herein the structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains half of the complex with the formula unit being generated by an inversion center. The central part of the complex had a paddle-wheel type conformation four benzoate ligands bridging two symmetry related ZnII ions. The distorted square-pyramidal coordination environment around the unique ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal oxygen atoms.

Experimental

30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml me thanol solution of 4-(pyrrolidin-1-yl)pyridine (30.3 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridine) and 0.97 Å (pyrrolidine). They were included in the refinement in a riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The atoms C37/C37A and C38/C38A are disorder components both with refined occupancies of 0.53 (2) and 0.47 (2).

Figures

Fig. 1.
The molecular structure of the title complex showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. The disordered part of pyrrol group is shown by green bonds [Symmetry ...

Crystal data

[Zn2(C7H5O2)4(C9H12N2)2]F(000) = 944
Mr = 911.59Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1481 reflections
a = 11.0021 (11) Åθ = 2.3–19.2°
b = 11.4303 (11) ŵ = 1.19 mm1
c = 16.9508 (16) ÅT = 293 K
β = 93.869 (2)°Plate, colorless
V = 2126.8 (4) Å30.08 × 0.08 × 0.01 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer4159 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
graphiteRint = 0.068
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −13→13
Tmin = 0.909, Tmax = 0.988k = −13→14
11271 measured reflectionsl = −17→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.1079P)2] where P = (Fo2 + 2Fc2)/3
4159 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.94 e Å3
7 restraintsΔρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.11885 (5)0.44449 (5)0.02560 (4)0.0380 (2)
O110.1576 (4)0.5331 (3)−0.0760 (2)0.0524 (11)
O120.0192 (4)0.3879 (4)0.1160 (2)0.0574 (11)
O210.1591 (3)0.5941 (3)0.0872 (2)0.0528 (10)
O220.0201 (4)0.3274 (3)−0.0446 (2)0.0562 (11)
N310.2720 (4)0.3488 (4)0.0436 (2)0.0389 (10)
N320.5772 (4)0.1339 (4)0.0637 (3)0.0494 (12)
C110.0949 (5)0.5977 (5)−0.1189 (3)0.0409 (13)
C120.1545 (5)0.6638 (4)−0.1822 (3)0.0428 (14)
C130.2792 (6)0.6570 (5)−0.1882 (3)0.0556 (16)
H130.32500.6061−0.15540.067*
C140.3364 (7)0.7242 (6)−0.2419 (4)0.072 (2)
H140.42070.7224−0.24360.086*
C150.2653 (9)0.7955 (7)−0.2942 (5)0.089 (3)
H150.30250.8385−0.33250.107*
C160.1429 (8)0.8024 (6)−0.2898 (4)0.074 (2)
H160.09740.8523−0.32360.089*
C170.0854 (6)0.7365 (5)−0.2356 (3)0.0542 (15)
H170.00110.7397−0.23420.065*
C210.0822 (6)0.6758 (5)0.0839 (3)0.0444 (14)
C220.1148 (5)0.7854 (4)0.1296 (3)0.0384 (13)
C230.0408 (6)0.8808 (5)0.1229 (4)0.0638 (18)
H23−0.02970.87740.08940.077*
C240.0676 (7)0.9824 (6)0.1645 (5)0.084 (3)
H240.01741.04760.15800.101*
C250.1670 (8)0.9853 (6)0.2142 (5)0.082 (2)
H250.18351.05270.24380.098*
C260.2463 (7)0.8915 (6)0.2234 (4)0.0710 (19)
H260.31590.89500.25760.085*
C270.2173 (6)0.7926 (5)0.1794 (4)0.0579 (17)
H270.26950.72860.18380.069*
C310.3724 (5)0.3727 (5)0.0069 (3)0.0455 (14)
H310.37190.4391−0.02490.055*
C320.4768 (5)0.3064 (5)0.0126 (4)0.0531 (16)
H320.54410.3287−0.01420.064*
C330.4810 (5)0.2046 (5)0.0591 (3)0.0422 (13)
C340.3747 (5)0.1802 (5)0.0984 (4)0.0517 (16)
H340.37190.11520.13120.062*
C350.2759 (5)0.2528 (5)0.0879 (3)0.0478 (15)
H350.20660.23350.11360.057*
C360.6859 (5)0.1549 (5)0.0198 (4)0.0573 (17)
H36A0.72970.22350.03980.069*0.47 (2)
H36B0.66390.1656−0.03610.069*0.47 (2)
C370.7631 (14)0.0439 (11)0.0341 (9)0.054 (4)*0.47 (2)
H37A0.7416−0.0159−0.00500.065*0.47 (2)
H37B0.84950.06070.03400.065*0.47 (2)
C380.7273 (7)0.008 (2)0.1161 (9)0.067 (6)*0.47 (2)
H38A0.76850.05660.15670.080*0.47 (2)
H38B0.7467−0.07310.12680.080*0.47 (2)
C390.5882 (5)0.0289 (5)0.1122 (4)0.0607 (18)
H39A0.5441−0.03620.08720.073*0.47 (2)
H39B0.55950.04200.16430.073*0.47 (2)
H36C0.71130.23600.02380.069*0.53 (2)
H36D0.67100.1345−0.03550.069*0.53 (2)
C37A0.7824 (9)0.0733 (12)0.0611 (11)0.073 (5)*0.53 (2)
H37C0.83620.04250.02310.088*0.53 (2)
H37D0.83100.11560.10160.088*0.53 (2)
C38A0.7126 (9)−0.0257 (12)0.0979 (11)0.063 (5)*0.53 (2)
H38C0.7539−0.05140.14730.076*0.53 (2)
H38D0.7034−0.09190.06220.076*0.53 (2)
H39C0.5231−0.02540.09710.073*0.53 (2)
H39D0.58390.04860.16760.073*0.53 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0382 (4)0.0339 (3)0.0421 (4)0.0065 (3)0.0043 (3)0.0011 (3)
O110.061 (3)0.051 (2)0.047 (2)0.011 (2)0.011 (2)0.017 (2)
O120.055 (3)0.064 (3)0.056 (3)0.007 (2)0.016 (2)0.016 (2)
O210.052 (3)0.040 (2)0.064 (3)0.007 (2)−0.011 (2)−0.010 (2)
O220.054 (3)0.050 (2)0.063 (3)−0.002 (2)−0.010 (2)−0.014 (2)
N310.038 (3)0.038 (2)0.041 (3)0.005 (2)0.002 (2)0.005 (2)
N320.043 (3)0.052 (3)0.053 (3)0.016 (2)0.006 (2)0.010 (2)
C110.055 (4)0.034 (3)0.035 (3)−0.005 (3)0.012 (3)−0.003 (2)
C120.053 (4)0.037 (3)0.039 (3)−0.004 (3)0.012 (3)−0.004 (3)
C130.063 (4)0.061 (4)0.044 (3)−0.008 (3)0.013 (3)−0.005 (3)
C140.073 (5)0.076 (5)0.068 (5)−0.023 (4)0.027 (4)−0.015 (4)
C150.135 (8)0.071 (5)0.066 (5)−0.035 (5)0.046 (6)0.000 (4)
C160.109 (7)0.066 (5)0.046 (4)−0.005 (4)0.004 (4)0.018 (3)
C170.063 (4)0.051 (4)0.048 (4)−0.004 (3)−0.001 (3)0.008 (3)
C210.062 (4)0.035 (3)0.037 (3)−0.002 (3)0.017 (3)0.004 (2)
C220.037 (3)0.041 (3)0.037 (3)−0.007 (2)0.005 (3)−0.005 (2)
C230.047 (4)0.049 (4)0.096 (5)0.006 (3)0.003 (4)−0.018 (4)
C240.062 (5)0.060 (5)0.128 (7)0.012 (4)−0.026 (5)−0.038 (5)
C250.103 (7)0.052 (4)0.093 (6)−0.013 (4)0.022 (5)−0.028 (4)
C260.083 (5)0.068 (5)0.059 (4)−0.015 (4)−0.016 (4)−0.013 (4)
C270.080 (5)0.038 (3)0.054 (4)0.000 (3)0.000 (4)0.002 (3)
C310.040 (3)0.046 (3)0.050 (3)0.003 (3)0.001 (3)0.015 (3)
C320.048 (4)0.055 (4)0.058 (4)0.004 (3)0.016 (3)0.012 (3)
C330.042 (3)0.041 (3)0.044 (3)0.009 (3)0.001 (3)−0.001 (3)
C340.053 (4)0.043 (3)0.061 (4)0.011 (3)0.012 (3)0.017 (3)
C350.043 (3)0.043 (3)0.059 (4)0.005 (3)0.016 (3)0.011 (3)
C360.047 (4)0.064 (4)0.062 (4)0.015 (3)0.013 (3)0.006 (3)
C390.061 (4)0.050 (4)0.072 (4)0.017 (3)0.006 (4)0.009 (3)
C36A0.047 (4)0.064 (4)0.062 (4)0.015 (3)0.013 (3)0.006 (3)
C39A0.061 (4)0.050 (4)0.072 (4)0.017 (3)0.006 (4)0.009 (3)

Geometric parameters (Å, °)

Zn1—N312.014 (4)C23—H230.9300
Zn1—O212.036 (4)C24—C251.335 (11)
Zn1—O122.048 (4)C24—H240.9300
Zn1—O222.053 (4)C25—C261.384 (11)
Zn1—O112.068 (4)C25—H250.9300
Zn1—Zn1i2.9826 (12)C26—C271.380 (8)
O11—C111.216 (6)C26—H260.9300
O12—C11i1.270 (6)C27—H270.9300
O21—C211.260 (6)C31—C321.374 (7)
O22—C21i1.268 (7)C31—H310.9300
N31—C351.329 (6)C32—C331.404 (7)
N31—C311.333 (6)C32—H320.9300
N32—C331.330 (6)C33—C341.412 (7)
N32—C391.454 (7)C34—C351.370 (7)
N32—C361.470 (7)C34—H340.9300
C11—O12i1.270 (6)C35—H350.9300
C11—C121.500 (7)C36—C371.536 (7)
C12—C131.384 (8)C36—H36A0.9700
C12—C171.413 (8)C36—H36B0.9700
C13—C141.375 (8)C37—C381.525 (10)
C13—H130.9300C37—H37A0.9700
C14—C151.403 (11)C37—H37B0.9700
C14—H140.9300C38—C391.545 (7)
C15—C161.356 (10)C38—H38A0.9700
C15—H150.9300C38—H38B0.9700
C16—C171.374 (8)C39—H39A0.9700
C16—H160.9300C39—H39B0.9700
C17—H170.9300C37A—C38A1.524 (10)
C21—O22i1.268 (7)C37A—H37C0.9700
C21—C221.504 (7)C37A—H37D0.9700
C22—C231.361 (8)C38A—H38C0.9700
C22—C271.364 (8)C38A—H38D0.9700
C23—C241.380 (9)
N31—Zn1—O21103.14 (17)C25—C24—H24120.6
N31—Zn1—O12101.53 (16)C23—C24—H24120.6
O21—Zn1—O1289.46 (17)C24—C25—C26122.3 (7)
N31—Zn1—O2297.95 (17)C24—C25—H25118.9
O21—Zn1—O22158.90 (16)C26—C25—H25118.9
O12—Zn1—O2286.50 (17)C27—C26—C25117.0 (7)
N31—Zn1—O11100.06 (16)C27—C26—H26121.5
O21—Zn1—O1188.04 (16)C25—C26—H26121.5
O12—Zn1—O11158.27 (16)C22—C27—C26122.3 (6)
O22—Zn1—O1188.11 (16)C22—C27—H27118.8
N31—Zn1—Zn1i169.40 (13)C26—C27—H27118.8
O21—Zn1—Zn1i87.02 (11)N31—C31—C32124.7 (5)
O12—Zn1—Zn1i81.31 (12)N31—C31—H31117.7
O22—Zn1—Zn1i71.90 (12)C32—C31—H31117.7
O11—Zn1—Zn1i77.01 (12)C31—C32—C33119.5 (5)
C11—O11—Zn1130.8 (4)C31—C32—H32120.2
C11i—O12—Zn1124.6 (4)C33—C32—H32120.2
C21—O21—Zn1118.5 (4)N32—C33—C32122.2 (5)
C21i—O22—Zn1137.7 (4)N32—C33—C34122.2 (5)
C35—N31—C31115.9 (4)C32—C33—C34115.6 (5)
C35—N31—Zn1122.0 (3)C35—C34—C33119.6 (5)
C31—N31—Zn1122.0 (4)C35—C34—H34120.2
C33—N32—C39124.8 (4)C33—C34—H34120.2
C33—N32—C36122.8 (5)N31—C35—C34124.7 (5)
C39—N32—C36112.4 (4)N31—C35—H35117.6
O11—C11—O12i125.3 (5)C34—C35—H35117.6
O11—C11—C12118.4 (5)N32—C36—C37104.2 (6)
O12i—C11—C12116.3 (5)N32—C36—H36A110.9
C13—C12—C17118.6 (5)C37—C36—H36A110.9
C13—C12—C11120.5 (6)N32—C36—H36B110.9
C17—C12—C11120.8 (5)C37—C36—H36B110.9
C14—C13—C12121.2 (7)H36A—C36—H36B108.9
C14—C13—H13119.4C38—C37—C36100.9 (9)
C12—C13—H13119.4C38—C37—H37A111.6
C13—C14—C15118.8 (7)C36—C37—H37A111.6
C13—C14—H14120.6C38—C37—H37B111.6
C15—C14—H14120.6C36—C37—H37B111.6
C16—C15—C14120.8 (6)H37A—C37—H37B109.4
C16—C15—H15119.6C37—C38—C39103.7 (8)
C14—C15—H15119.6C37—C38—H38A111.0
C15—C16—C17120.6 (7)C39—C38—H38A111.0
C15—C16—H16119.7C37—C38—H38B111.0
C17—C16—H16119.7C39—C38—H38B111.0
C16—C17—C12119.9 (6)H38A—C38—H38B109.0
C16—C17—H17120.0N32—C39—C38101.2 (8)
C12—C17—H17120.0N32—C39—H39A111.5
O21—C21—O22i124.9 (5)C38—C39—H39A111.5
O21—C21—C22117.3 (6)N32—C39—H39B111.5
O22i—C21—C22117.9 (5)C38—C39—H39B111.5
C23—C22—C27118.0 (5)H39A—C39—H39B109.3
C23—C22—C21120.2 (5)C38A—C37A—H37C110.4
C27—C22—C21121.8 (5)C38A—C37A—H37D110.4
C22—C23—C24121.6 (7)H37C—C37A—H37D108.6
C22—C23—H23119.2C37A—C38A—H38C111.0
C24—C23—H23119.2C37A—C38A—H38D111.0
C25—C24—C23118.8 (7)H38C—C38A—H38D109.0
N31—Zn1—O11—C11173.5 (5)C14—C15—C16—C17−2.3 (11)
O21—Zn1—O11—C11−83.5 (5)C15—C16—C17—C122.2 (10)
O12—Zn1—O11—C110.1 (8)C13—C12—C17—C16−2.8 (9)
O22—Zn1—O11—C1175.8 (5)C11—C12—C17—C16175.6 (5)
Zn1i—Zn1—O11—C113.9 (5)Zn1—O21—C21—O22i0.0 (7)
N31—Zn1—O12—C11i−162.7 (4)Zn1—O21—C21—C22−179.7 (3)
O21—Zn1—O12—C11i94.0 (5)O21—C21—C22—C23174.1 (5)
O22—Zn1—O12—C11i−65.2 (5)O22i—C21—C22—C23−5.6 (7)
O11—Zn1—O12—C11i10.7 (8)O21—C21—C22—C27−6.7 (7)
Zn1i—Zn1—O12—C11i7.0 (4)O22i—C21—C22—C27173.6 (5)
N31—Zn1—O21—C21176.1 (4)C27—C22—C23—C240.3 (9)
O12—Zn1—O21—C21−82.2 (4)C21—C22—C23—C24179.5 (6)
O22—Zn1—O21—C21−3.3 (7)C22—C23—C24—C25−2.0 (12)
O11—Zn1—O21—C2176.2 (4)C23—C24—C25—C262.4 (13)
Zn1i—Zn1—O21—C21−0.8 (4)C24—C25—C26—C27−1.0 (12)
N31—Zn1—O22—C21i−175.1 (5)C23—C22—C27—C261.1 (9)
O21—Zn1—O22—C21i4.4 (8)C21—C22—C27—C26−178.1 (5)
O12—Zn1—O22—C21i83.8 (5)C25—C26—C27—C22−0.8 (10)
O11—Zn1—O22—C21i−75.2 (5)C35—N31—C31—C32−0.5 (9)
Zn1i—Zn1—O22—C21i1.8 (5)Zn1—N31—C31—C32−175.5 (5)
O21—Zn1—N31—C35110.2 (4)N31—C31—C32—C330.8 (10)
O12—Zn1—N31—C3518.1 (5)C39—N32—C33—C32178.5 (6)
O22—Zn1—N31—C35−70.0 (4)C36—N32—C33—C32−1.1 (9)
O11—Zn1—N31—C35−159.4 (4)C39—N32—C33—C34−3.7 (9)
Zn1i—Zn1—N31—C35−86.5 (8)C36—N32—C33—C34176.7 (6)
O21—Zn1—N31—C31−75.2 (5)C31—C32—C33—N32176.6 (6)
O12—Zn1—N31—C31−167.3 (4)C31—C32—C33—C34−1.3 (9)
O22—Zn1—N31—C31104.7 (4)N32—C33—C34—C35−176.4 (6)
O11—Zn1—N31—C3115.2 (5)C32—C33—C34—C351.6 (9)
Zn1i—Zn1—N31—C3188.1 (8)C31—N31—C35—C340.8 (9)
Zn1—O11—C11—O12i−10.9 (9)Zn1—N31—C35—C34175.8 (5)
Zn1—O11—C11—C12171.0 (3)C33—C34—C35—N31−1.4 (10)
O11—C11—C12—C13−4.1 (8)C33—N32—C36—C37−172.3 (9)
O12i—C11—C12—C13177.6 (5)C39—N32—C36—C378.1 (10)
O11—C11—C12—C17177.5 (5)N32—C36—C37—C38−30.5 (16)
O12i—C11—C12—C17−0.7 (7)C36—C37—C38—C3942 (2)
C17—C12—C13—C143.6 (9)C33—N32—C39—C38−162.0 (9)
C11—C12—C13—C14−174.8 (5)C36—N32—C39—C3817.6 (10)
C12—C13—C14—C15−3.6 (9)C37—C38—C39—N32−36.8 (17)
C13—C14—C15—C163.0 (11)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2962).

References

  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev.252, 1093–1107.
  • Karmakar, A., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun.9, 1169–1172.
  • Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [PMC free article] [PubMed]
  • Necefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121–m122.
  • Ohmura, T., Mori, W., Takei, T., Ikeda, T. & Maeda, A. (2005). Mater. Sci. Pol.23, 729–736.
  • Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [PMC free article] [PubMed]
  • Parkin, G. (2004). Chem. Rev.104, 699–767. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. [PMC free article] [PubMed]
  • Song, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495–m1496. [PMC free article] [PubMed]
  • Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev.104, 987–1012. [PubMed]
  • Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [PMC free article] [PubMed]
  • Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. [PMC free article] [PubMed]
  • Zeleňák, V., Sabo, M., Massa, W. & Černák, J. (2004). Acta Cryst. C60, m85–m87. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography