PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m88–m89.
Published online 2009 December 24. doi:  10.1107/S1600536809054208
PMCID: PMC2980152

catena-Poly[[tetra-μ3-isonicotinato-μ3-oxalato-μ2-oxalato-disamarium(III)disilver(I)] dihydrate]

Abstract

In the title compound, {[AgSm(C6H4NO2)2(C2O4)]·H2O}n, the asymmetric unit contains one SmIII ion, one AgI ion, two unique isonicotinate (ina) ligands, two half oxalate (ox) ligands (one on an inversion centre, the other on a twofold axis) and one uncoordinated water mol­ecule. The central SmIII ion is nine-coordinated by four O-donor atoms from separate bidentate bridging ox ligands and five O-donor atoms from the two ina ligands (both bidentate) and a symmetry-related ina ligand [Sm—O = 2.389 (4)–2.791 (4) Å], giving a distorted monocapped square anti­prismatic geometry. The AgI ion is three-coordinated in a T-shaped geometry involving two ina N-donor atoms [Ag—N = 2.181 (6) and 2.185 (5) Å] and a bridging oxalate O-donor atom [Ag—O = 2.620 (4) Å]. The three-dimensional heterometallic Sm—Ag coordination polymer, having a unique (3,4,6)-connected five-nodal net topology, is constructed from two-dimensional samarium–oxalate layers and pillared Ag(ina)2 subunits. Inter­molecular water–carboxyl­ate O—H(...)O hydrogen-bonding inter­actions are also present.

Related literature

For microporous metal-organic framework (MMOF) compounds, see: Sun et al. (2006 [triangle]); Wu & Lin (2005 [triangle]); Cho et al. (2006 [triangle]). For isonicotinic acid-heterometallic compounds, see: Cai et al. (2009 [triangle]); Gu & Xue (2006 [triangle], 2007 [triangle]); Ma et al. (2009 [triangle]). For topological studies, see: Blatov et al. (2000 [triangle]); Blatov & Shevchenko (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m88-scheme1.jpg

Experimental

Crystal data

  • [AgSm(C6H4NO2)2(C2O4)]·H2O
  • M r = 608.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m88-efi10.jpg
  • a = 22.0484 (18) Å
  • b = 9.2372 (8) Å
  • c = 17.1137 (14) Å
  • β = 108.123 (1)°
  • V = 3312.6 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.75 mm−1
  • T = 298 K
  • 0.30 × 0.23 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.330, T max = 0.482
  • 8766 measured reflections
  • 3240 independent reflections
  • 2789 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.08
  • 3240 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −1.50 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054208/zs2014sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054208/zs2014Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009), and NSFC (grant Nos. U0734005 and 20971047).

supplementary crystallographic information

Comment

Microporous metal-organic frameworks (MMOFs) are of great current interest in view of their fascinating structural topologies and potential applications, e.g. in small molecule gas storage, separation and catalysis (Sun et al., 2006; Wu et al., 2005; Cho et al., 2006). However, most of the works have so far focused on the assembly of 3d block metals with organic ligands as linkers and many 3d-4f heterometallic MOFs have also been reported. However, the 4d-4f heterometallic compounds based on the isonicotinic acid (ina) ligand have received less attention (Gu et al., 2006; Gu et al., 2007; Ma et al., 2009; Cai et al., 2009). The preparation of 4d-4f MMOFs has certain difficulties because of the high coordination number of 4f block metals, which frequently leads to interpenetration and consequently results in a decrease of the pore size or the MMOF may even become nonporous. Therefore the selection of the organic ligands becomes a key point in the preparation of 4d-4f heterometallic MMOFs. Herein, we report the structure of the title compound {[SmAg(C6H4NO2)2(C2O4)].H2O}n (I) involving SmIII, AgI and the organic nicotinate and oxalate ligands, which has a microporous structure.

In the title compound (Fig. 1), the asymmetric unit contains one SmIII ion, one AgI ion, two unique isonicotinate (ina) ligands, two half oxalate (ox) ligands [one on an inversion centre (associated with O5 and O6), the other on a two-fold axis (associated with O7 and O8)] and one uncoordinated water molecule of solvation (O1W). The central SmIII ion is nine-coordinate with four O-donor atoms from separate bidentate bridging ox ligands and five O-donors from the two ina ligands (both bidentate) [Sm—O bond length range, 2.389 (4)–2.791 (4) Å], giving a distorted monocapped square antiprismatic stereochemistry. The three-coordinate AgIion is surrounded by two N-donor atoms from the two ina ligands [Ag–N, 2.181 (6), 2.185 (5) Å] and one O atom from a bridging oxalate ligand giving a T-shaped coordination geometry. The Ag—O bond [2.620 (4) Å] is long but this and the N—Ag—N angle [154.3 (2)°] are similar to those found in other AgI complexes having T-shaped configurations. The oxalate ligands bridge Sm centers to form a two-dimensional lanthanide-oxalate layered network. In the packing arrangement of the title compound, 'linear' N–Ag–N linkages play an important role in connecting the adjacent two-dimensional layers, forming a three-dimensional pillar-layered coordination polymer with microporous structures. Topological studies performed using the software package TOPOS 4.0 (Blatov & Shevchenko, 2006; Blatov et al., 2000) reveal that this topology is a unique five-nodal (3,4,6)-connected net. The water molecule of solvation also gives O–H···O hydrogen-bonding interactions with oxalate and isonicotinate O acceptors (Table 1).

Experimental

A mixture of isonicotinic acid (0.0615 g), Sm(NO3)3.6H2O (0.114 g), AgNO3 (0.051 g, 0.3mmol), oxalic acid dihydrate (0.037 g, 0.3mmol) and water (10 ml) was heated at 430 K for 72 h in a 23 ml Teflon-lined stainless-steel autoclave and then cooled to room temperature at a rate of 278° per hour. Colourless prismatic crystals were collected, washed with water three times and dried in air.

Refinement

All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 |%A and O—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). The H atoms of the water molecule (O1W) were found from the difference Fourier maps and fixed using AFIX within SHELXL97 (Sheldrick, 2008).

Figures

Fig. 1.
Displacement ellipsoid plot (40% probability level) of the title compound, with atom numbering scheme for non-H atoms. For symmetry-generated atoms, codes are: (A) -x + 1, y, -z - 1/2; (B) -x + 1, -y, -z; (C) -x + 1, -y + 1, -z; (D) -x + 1/2, y - 1/2,-z ...
Fig. 2.
The three-dimensional pillar-layered structure in a packing diagram of the title compound, with H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.

Crystal data

[AgSm(C6H4NO2)2(C2O4)]·H2OF(000) = 2312
Mr = 608.47Dx = 2.440 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3815 reflections
a = 22.0484 (18) Åθ = 2.4–27.8°
b = 9.2372 (8) ŵ = 4.75 mm1
c = 17.1137 (14) ÅT = 298 K
β = 108.123 (1)°Prism, colorless
V = 3312.6 (5) Å30.30 × 0.23 × 0.18 mm
Z = 8

Data collection

Bruker SMART APEX CCD-detector diffractometer3240 independent reflections
Radiation source: fine-focus sealed tube2789 reflections with I > 2σ(I)
graphiteRint = 0.057
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −27→27
Tmin = 0.330, Tmax = 0.482k = −11→11
8766 measured reflectionsl = −16→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0301P)2 + 2.6943P] where P = (Fo2 + 2Fc2)/3
3240 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = −1.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.17077 (3)0.56369 (8)0.13601 (4)0.0685 (2)
C10.5352 (2)0.0142 (5)0.0244 (3)0.0262 (11)
C20.5364 (2)0.2525 (5)−0.2303 (3)0.0240 (11)
C30.3774 (2)0.4799 (6)−0.0550 (3)0.0278 (11)
C40.3236 (3)0.5115 (6)−0.0213 (3)0.0317 (12)
C50.2693 (4)0.4269 (10)−0.0417 (6)0.082 (3)
H50.26270.3567−0.08250.098*
C60.3283 (3)0.6170 (8)0.0352 (5)0.0520 (18)
H60.36230.68170.04730.062*
C70.2830 (3)0.6284 (8)0.0745 (4)0.0527 (19)
H70.28840.69920.11480.063*
C80.2246 (4)0.4474 (10)−0.0008 (6)0.086 (3)
H80.18780.3910−0.01550.103*
C90.1123 (4)0.5823 (7)0.2779 (5)0.064 (2)
H90.11600.48220.27600.077*
C100.1345 (3)0.8035 (7)0.2388 (4)0.0437 (16)
H100.15470.86150.21010.052*
C110.1016 (3)0.8711 (7)0.2855 (4)0.0408 (15)
H110.09850.97140.28660.049*
C120.0803 (3)0.6383 (7)0.3267 (4)0.0490 (18)
H120.06300.57730.35740.059*
C130.0734 (3)0.7849 (6)0.3305 (3)0.0255 (11)
C140.0374 (2)0.8525 (6)0.3833 (3)0.0262 (11)
N10.1388 (2)0.6622 (6)0.2325 (3)0.0420 (13)
N20.2324 (3)0.5447 (6)0.0585 (3)0.0492 (14)
O10.0347 (2)0.7806 (4)0.4442 (2)0.0353 (9)
O20.01455 (19)0.9765 (4)0.3628 (2)0.0337 (9)
O30.37193 (18)0.3777 (5)−0.1045 (2)0.0388 (10)
O40.42816 (17)0.5524 (4)−0.0283 (2)0.0316 (8)
O50.56218 (17)−0.0747 (4)0.0790 (2)0.0286 (8)
O60.55987 (17)0.1263 (4)0.0070 (2)0.0307 (8)
O70.55695 (18)0.2331 (4)−0.1546 (2)0.0332 (9)
O80.56874 (17)0.2685 (4)−0.2785 (2)0.0309 (8)
O1W0.2965 (3)0.1982 (6)−0.2401 (4)0.0729 (17)
H1W0.33110.2196−0.25060.109*
H2W0.29250.2570−0.20310.109*
Sm10.487549 (12)0.31384 (3)−0.073228 (15)0.02264 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0488 (3)0.1075 (6)0.0651 (4)−0.0103 (3)0.0408 (3)−0.0402 (4)
C10.037 (3)0.022 (3)0.025 (3)−0.004 (2)0.017 (2)−0.005 (2)
C20.036 (3)0.016 (3)0.027 (3)0.000 (2)0.020 (2)0.000 (2)
C30.027 (3)0.035 (3)0.022 (3)0.002 (2)0.010 (2)0.003 (2)
C40.029 (3)0.041 (3)0.031 (3)−0.004 (2)0.017 (2)−0.003 (2)
C50.063 (5)0.109 (7)0.099 (7)−0.046 (5)0.061 (5)−0.083 (6)
C60.036 (3)0.056 (4)0.071 (5)−0.012 (3)0.027 (3)−0.032 (4)
C70.037 (3)0.067 (5)0.057 (4)−0.006 (3)0.020 (3)−0.037 (4)
C80.068 (5)0.110 (8)0.109 (7)−0.049 (5)0.070 (5)−0.069 (6)
C90.090 (6)0.031 (4)0.104 (6)−0.011 (3)0.080 (5)−0.017 (4)
C100.048 (4)0.054 (4)0.042 (4)0.001 (3)0.032 (3)0.006 (3)
C110.056 (4)0.033 (3)0.047 (4)0.011 (3)0.035 (3)0.016 (3)
C120.072 (5)0.028 (3)0.072 (5)−0.007 (3)0.059 (4)−0.005 (3)
C130.031 (3)0.030 (3)0.018 (2)0.003 (2)0.013 (2)0.001 (2)
C140.030 (3)0.027 (3)0.028 (3)−0.001 (2)0.017 (2)−0.005 (2)
N10.045 (3)0.049 (3)0.044 (3)−0.006 (2)0.031 (3)−0.018 (2)
N20.045 (3)0.066 (4)0.051 (3)−0.001 (3)0.034 (3)−0.016 (3)
O10.052 (3)0.033 (2)0.030 (2)0.0029 (18)0.0265 (19)0.0004 (17)
O20.050 (2)0.028 (2)0.030 (2)0.0086 (17)0.0228 (18)−0.0002 (16)
O30.035 (2)0.050 (3)0.037 (2)−0.0027 (18)0.0180 (18)−0.015 (2)
O40.0268 (19)0.036 (2)0.035 (2)−0.0004 (17)0.0138 (16)0.0022 (17)
O50.035 (2)0.0238 (19)0.028 (2)−0.0042 (15)0.0108 (16)0.0055 (15)
O60.030 (2)0.026 (2)0.040 (2)−0.0057 (16)0.0180 (17)0.0028 (17)
O70.039 (2)0.041 (2)0.025 (2)0.0037 (18)0.0167 (17)0.0006 (17)
O80.033 (2)0.035 (2)0.033 (2)0.0030 (16)0.0217 (17)0.0026 (17)
O1W0.058 (3)0.081 (4)0.080 (4)−0.006 (3)0.022 (3)−0.011 (3)
Sm10.02976 (18)0.02037 (18)0.02401 (18)−0.00243 (10)0.01742 (13)−0.00082 (9)

Geometric parameters (Å, °)

Sm1—O32.507 (4)N1—C91.331 (10)
Sm1—O42.791 (4)N2—C81.326 (11)
Sm1—O62.463 (4)N2—C71.314 (10)
Sm1—O72.483 (4)C1—C1ii1.539 (7)
Sm1—O8i2.489 (3)C2—C2i1.536 (7)
Sm1—O5ii2.454 (4)C3—C41.500 (8)
Sm1—O4iii2.448 (4)C4—C61.354 (9)
Sm1—O1iv2.426 (4)C4—C51.381 (11)
Sm1—O2v2.389 (4)C5—C81.388 (13)
Ag1—N12.185 (5)C6—C71.371 (10)
Ag1—N22.181 (6)C9—C121.353 (11)
Ag1—O5vi2.620 (4)C10—C111.384 (10)
O1—C141.253 (6)C11—C131.383 (9)
O2—C141.257 (7)C12—C131.367 (9)
O3—C31.249 (7)C13—C141.511 (8)
O4—C31.262 (6)C5—H50.9300
O5—C11.247 (6)C6—H60.9300
O6—C11.248 (6)C7—H70.9300
O7—C21.245 (6)C8—H80.9300
O8—C21.256 (6)C9—H90.9300
O1W—H2W0.8600C10—H100.9300
O1W—H1W0.8600C11—H110.9300
N1—C101.316 (9)C12—H120.9300
O3—Sm1—O448.69 (12)Sm1i—O8—C2119.0 (3)
O3—Sm1—O6136.35 (13)H1W—O1W—H2W108.00
O3—Sm1—O7135.58 (11)Ag1—N1—C9120.9 (5)
O3—Sm1—O8i70.76 (12)Ag1—N1—C10121.6 (4)
O3—Sm1—O5ii77.95 (14)C9—N1—C10116.5 (6)
O3—Sm1—O4iii122.00 (13)Ag1—N2—C8124.3 (6)
O1iv—Sm1—O375.17 (13)C7—N2—C8117.2 (7)
O2v—Sm1—O395.35 (14)Ag1—N2—C7118.4 (4)
O4—Sm1—O6132.82 (10)O5—C1—O6125.7 (5)
O4—Sm1—O7144.66 (11)O6—C1—C1ii116.9 (4)
O4—Sm1—O8i106.61 (11)O5—C1—C1ii117.4 (4)
O4—Sm1—O5ii118.67 (12)O7—C2—O8127.1 (5)
O4—Sm1—O4iii73.95 (12)O8—C2—C2i116.2 (4)
O1iv—Sm1—O466.68 (11)O7—C2—C2i116.7 (4)
O2v—Sm1—O472.02 (12)O3—C3—O4122.3 (5)
O6—Sm1—O772.32 (12)O3—C3—C4119.1 (5)
O6—Sm1—O8i118.75 (12)O4—C3—C4118.4 (5)
O5ii—Sm1—O665.99 (12)C3—C4—C5121.3 (6)
O4iii—Sm1—O675.07 (12)C3—C4—C6121.4 (6)
O1iv—Sm1—O671.50 (13)C5—C4—C6117.1 (7)
O2v—Sm1—O6127.96 (13)C4—C5—C8119.4 (8)
O7—Sm1—O8i64.94 (12)C4—C6—C7120.0 (7)
O5ii—Sm1—O793.02 (12)N2—C7—C6123.6 (7)
O4iii—Sm1—O794.90 (12)N2—C8—C5122.3 (8)
O1iv—Sm1—O7143.81 (13)N1—C9—C12123.8 (6)
O2v—Sm1—O772.64 (13)N1—C10—C11124.0 (6)
O5ii—Sm1—O8i74.50 (11)C10—C11—C13118.0 (6)
O4iii—Sm1—O8i146.76 (12)C9—C12—C13119.7 (6)
O1iv—Sm1—O8i136.79 (13)C11—C13—C14120.4 (5)
O2v—Sm1—O8i77.62 (12)C12—C13—C14121.7 (5)
O4iii—Sm1—O5ii135.56 (11)C11—C13—C12117.9 (6)
O1iv—Sm1—O5ii73.05 (12)O1—C14—O2126.6 (5)
O2v—Sm1—O5ii151.99 (11)O2—C14—C13116.7 (4)
O1iv—Sm1—O4iii75.03 (13)O1—C14—C13116.6 (5)
O2v—Sm1—O4iii70.96 (12)C4—C5—H5120.00
O1iv—Sm1—O2v132.02 (12)C8—C5—H5120.00
N1—Ag1—N2154.3 (2)C7—C6—H6120.00
O5vi—Ag1—N190.71 (15)C4—C6—H6120.00
O5vi—Ag1—N2113.85 (17)N2—C7—H7118.00
Sm1vii—O1—C14140.0 (3)C6—C7—H7118.00
Sm1viii—O2—C14138.3 (3)C5—C8—H8119.00
Sm1—O3—C399.0 (3)N2—C8—H8119.00
Sm1—O4—C385.4 (3)N1—C9—H9118.00
Sm1—O4—Sm1iii106.05 (13)C12—C9—H9118.00
Sm1iii—O4—C3156.5 (3)C11—C10—H10118.00
Sm1ii—O5—C1117.4 (3)N1—C10—H10118.00
Ag1ix—O5—C197.2 (3)C10—C11—H11121.00
Sm1ii—O5—Ag1ix143.05 (16)C13—C11—H11121.00
Sm1—O6—C1117.5 (3)C9—C12—H12120.00
Sm1—O7—C2116.9 (3)C13—C12—H12120.00
O8i—Sm1—O6—C1−72.4 (4)O3i—Sm1i—O8—C2164.2 (4)
O5ii—Sm1—O6—C1−17.8 (3)O4i—Sm1i—O8—C2130.7 (3)
O4iii—Sm1—O6—C1140.3 (4)O5vi—Ag1—N1—C947.9 (5)
O1iv—Sm1—O6—C161.4 (3)N1—Ag1—O5vi—C1vi95.8 (3)
O2v—Sm1—O6—C1−169.2 (3)N2—Ag1—O5vi—C1vi−76.5 (3)
O3—Sm1—O7—C217.4 (4)O5vi—Ag1—N1—C10−120.1 (5)
O4—Sm1—O7—C2−61.6 (4)N1—Ag1—N2—C77.2 (8)
O6—Sm1—O7—C2156.9 (4)N1—Ag1—N2—C8−177.3 (6)
O8i—Sm1—O7—C221.9 (3)O5vi—Ag1—N2—C7169.2 (5)
O5ii—Sm1—O7—C293.3 (3)O5vi—Ag1—N2—C8−15.3 (7)
O3vii—Sm1vii—O1—C14−84.5 (6)N2—Ag1—N1—C9−148.6 (6)
O4vii—Sm1vii—O1—C14−33.5 (5)N2—Ag1—N1—C1043.5 (7)
O6vii—Sm1vii—O1—C14124.1 (6)Sm1vii—O1—C14—C13161.8 (4)
O7vii—Sm1vii—O1—C14122.7 (5)Sm1vii—O1—C14—O2−16.4 (9)
O4viii—Sm1vii—O1—C1445.2 (5)Sm1viii—O2—C14—O126.0 (9)
O4vii—Sm1viii—O2—C1426.1 (5)Sm1viii—O2—C14—C13−152.2 (4)
O3viii—Sm1viii—O2—C14−95.9 (5)Sm1—O3—C3—C4−151.9 (4)
O4viii—Sm1viii—O2—C14−52.6 (5)Sm1—O3—C3—O423.7 (5)
O6viii—Sm1viii—O2—C1478.2 (5)Sm1—O4—C3—O3−21.0 (5)
O7viii—Sm1viii—O2—C14127.8 (5)Sm1iii—O4—C3—C433.8 (11)
O4—Sm1—O3—C3−11.8 (3)Sm1iii—O4—C3—O3−141.8 (7)
O6—Sm1—O3—C3101.1 (4)Sm1—O4—C3—C4154.7 (4)
O7—Sm1—O3—C3−142.7 (3)Sm1ii—O5—C1—O6−163.5 (4)
O8i—Sm1—O3—C3−147.0 (3)Ag1ix—O5—C1—C1ii−175.3 (3)
O5ii—Sm1—O3—C3135.4 (3)Ag1ix—O5—C1—O63.0 (5)
O4iii—Sm1—O3—C3−1.3 (4)Sm1ii—O5—C1—C1ii18.3 (5)
O1iv—Sm1—O3—C360.0 (3)Sm1—O6—C1—O5−162.4 (4)
O2v—Sm1—O3—C3−72.1 (3)Sm1—O6—C1—C1ii15.9 (5)
O3—Sm1—O4—C311.6 (3)Sm1—O7—C2—O8153.3 (4)
O6—Sm1—O4—C3−108.4 (3)Sm1—O7—C2—C2i−28.7 (5)
O7—Sm1—O4—C3125.4 (3)Sm1i—O8—C2—C2i4.0 (5)
O8i—Sm1—O4—C355.5 (3)Sm1i—O8—C2—O7−177.9 (4)
O5ii—Sm1—O4—C3−25.6 (3)Ag1—N1—C9—C12−166.4 (6)
O4iii—Sm1—O4—C3−159.2 (3)C10—N1—C9—C122.2 (11)
O1iv—Sm1—O4—C3−78.9 (3)Ag1—N1—C10—C11164.8 (5)
O2v—Sm1—O4—C3126.1 (3)C9—N1—C10—C11−3.7 (10)
O3—Sm1—O4—Sm1iii170.7 (2)Ag1—N2—C8—C5−171.7 (7)
O6—Sm1—O4—Sm1iii50.8 (2)Ag1—N2—C7—C6173.7 (6)
O7—Sm1—O4—Sm1iii−75.4 (2)C7—N2—C8—C53.8 (12)
O8i—Sm1—O4—Sm1iii−145.32 (13)C8—N2—C7—C6−2.1 (11)
O5ii—Sm1—O4—Sm1iii133.58 (13)O6—C1—C1ii—O6ii180.0 (4)
O4iii—Sm1—O4—Sm1iii0.02 (14)O5—C1—C1ii—O6ii−1.6 (7)
O1iv—Sm1—O4—Sm1iii80.28 (15)O6—C1—C1ii—O5ii1.6 (7)
O2v—Sm1—O4—Sm1iii−74.72 (14)O5—C1—C1ii—O5ii180.0 (4)
O3iii—Sm1iii—O4—Sm18.21 (18)O7—C2—C2i—O8i16.8 (6)
O4iii—Sm1iii—O4—Sm10.00 (11)O8—C2—C2i—O7i16.8 (6)
O6iii—Sm1iii—O4—Sm1143.96 (15)O7—C2—C2i—O7i−161.5 (4)
O7iii—Sm1iii—O4—Sm1−145.82 (12)O8—C2—C2i—O8i−164.9 (4)
O2iv—Sm1iii—O4—Sm1−76.09 (14)O3—C3—C4—C6177.1 (6)
O1v—Sm1iii—O4—Sm169.54 (13)O3—C3—C4—C52.3 (9)
O3iii—Sm1iii—O4—C3125.3 (9)O4—C3—C4—C61.3 (8)
O4iii—Sm1iii—O4—C3117.0 (9)O4—C3—C4—C5−173.5 (6)
O6iii—Sm1iii—O4—C3−99.0 (9)C6—C4—C5—C8−3.7 (12)
O7iii—Sm1iii—O4—C3−28.8 (9)C3—C4—C6—C7−169.6 (6)
O2iv—Sm1iii—O4—C341.0 (9)C3—C4—C5—C8171.3 (7)
O1v—Sm1iii—O4—C3−173.4 (9)C5—C4—C6—C75.5 (10)
O3ii—Sm1ii—O5—C1136.2 (4)C4—C5—C8—N2−0.9 (14)
O4ii—Sm1ii—O5—C1108.6 (3)C4—C6—C7—N2−2.7 (11)
O6ii—Sm1ii—O5—C1−18.6 (3)N1—C9—C12—C130.6 (12)
O7ii—Sm1ii—O5—C1−87.7 (3)N1—C10—C11—C132.3 (10)
O3—Sm1—O6—C119.3 (4)C10—C11—C13—C120.6 (9)
O4—Sm1—O6—C189.9 (4)C10—C11—C13—C14179.4 (5)
O7—Sm1—O6—C1−119.4 (4)C9—C12—C13—C11−2.0 (10)
O6i—Sm1i—O8—C2−62.8 (4)C9—C12—C13—C14179.3 (6)
O7i—Sm1i—O8—C2−12.5 (3)C11—C13—C14—O225.2 (8)
O2v—Sm1—O7—C2−62.2 (3)C12—C13—C14—O125.6 (8)
O4iii—Sm1—O7—C2−130.5 (3)C12—C13—C14—O2−156.1 (6)
O1iv—Sm1—O7—C2158.3 (3)C11—C13—C14—O1−153.1 (6)

Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z−1/2; (vi) x−1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x−1/2, −y+3/2, z+1/2; (ix) x+1/2, y−1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8i0.862.162.960 (8)156
O1W—H2W···O30.862.312.915 (7)128

Symmetry codes: (i) −x+1, y, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2014).

References

  • Blatov, V.-A. & Shevchenko, A.-P. (2006). TOPOS Samara State University, Russia.
  • Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst.33, 1193.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006–1013.
  • Cho, S.-H., Ma, B.-Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. (2006). Chem. Commun. pp. 2563–2565. [PubMed]
  • Gu, X.-J. & Xue, D.-F. (2006). Cryst. Growth Des.6, 2551–2557.
  • Gu, X.-J. & Xue, D.-F. (2007). CrystEngComm, 9, 471–477.
  • Ma, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun.12, 883–886.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, D.-F., Ma, S.-Q., Ke, Y.-X., Collins, D.-J. & Zhou, H.-C. (2006). J. Am. Chem. Soc.128, 3896–3897. [PubMed]
  • Wu, C.-D. & Lin, W.-B. (2005). Angew. Chem. Int. Ed.44, 1958–1961. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography