PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o191–o192.
Published online 2009 December 19. doi:  10.1107/S1600536809053963
PMCID: PMC2980149

(E)-1-(4-Nitro­phen­yl)-2-(4-{[(E)-2-(4-nitro­phen­yl)hydrazinyl­idene]meth­yl}benzyl­idene)hydrazine dihydrate

Abstract

The 30 non-H atoms in title dihydrazine compound, C20H16N6O4·2H2O, are close to coplanar, the r.m.s. deviation for these atoms being 0.096 Å. The conformation about each of the C=N bonds is E, and the mol­ecule has non-crystallographic 2/m symmetry. The presence of O—H(...)O and N—H(...)O hydrogen bonding leads to a three-dimensional network in the crystal structure. A highly disordered solvent mol­ecule is present within a mol­ecular cavity defined by the organic and water mol­ecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.

Related literature

For background to the structural chemistry of hydrazones, see: Baddeley et al. (2009 [triangle]); Ferguson et al. (2005 [triangle]); Glidewell et al. (2006 [triangle]); Low et al. (2006 [triangle]); Wardell et al. (2005 [triangle], 2006 [triangle]). For the synthesis, see: Bengelsdorf (1958 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o191-scheme1.jpg

Experimental

Crystal data

  • C20H16N6O4·2H2O
  • M r = 440.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o191-efi1.jpg
  • a = 7.7549 (4) Å
  • b = 9.3245 (7) Å
  • c = 15.3374 (11) Å
  • α = 100.749 (3)°
  • β = 90.533 (4)°
  • γ = 103.131 (5)°
  • V = 1059.56 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 120 K
  • 0.38 × 0.22 × 0.07 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.770, T max = 1.000
  • 16566 measured reflections
  • 3688 independent reflections
  • 2638 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.177
  • S = 1.09
  • 3688 reflections
  • 301 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053963/hg2618sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053963/hg2618Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

In connection with on-going studies into the structural chemistry of hydrazones (Baddeley et al., 2009; Ferguson et al., 2005; Glidewell et al., 2006; Low et al., 2006; Wardell et al., 2005; Wardell et al., 2006), we now report the structure of the title compound, (I).

The molecule in (I) is essentially planar with the r.m.s. of the 30 non-hydrogen atoms being 0.096 Å. The maximum deviations from the least-squares plane are 0.243 (2) Å for atom O3 and -0.140 (3) Å for atom C13; the former deviation arises as the N6-nitro group is slightly twisted out of the plane of the benzene ring to which it is attached: the C17–C18–N6–O3 torsion angle is 7.1 (3)°. The conformation about each of the C7═ N3 [1.288 (3) Å] and C14═N4 [1.280 (3) Å] bonds is E. Overall, to a first approximation, the molecule has non-crystallographic 2/m symmetry.

The water molecules are involved in a number of hydrogen bonding interactions and stabilize a double layer arrangement. As illustrated in Fig. 2, molecules are arranged into a layer being connected by O–H···O and N–H···O hydrogen bonds as well as C–H···O contacts, Table 1. Each of the hydrazine-H atoms forms a donor interaction to a water molecule. The O1w water molecule forms a donor hydrogen bond with a O2w water molecule in the plane, Fig. 2, as well as with a nitro-O4 atom. The O2w water molecule accepts a hydrogen bond from the O1w atom as described above, and forms two donor interactions with the nitro-O1 and O2 atoms via a bifurcated H4w atom. Each of the nitro O1 and O2 atoms forms a C–H···O contact. The aforementioned interactions stabilize a 2-D array. Each of the O1w (acceptor) and O2w (donor) molecules forms one further hydrogen bond to a water molecule of a centrosymmetrically related layer to form a double layer as well as eight-membered {···O—H}4 synthons. Further stability to the double layers is afforded by weak π···π interactions [ring centroid(C16–C6)···ring centroid(C15—C20)i = 3.6716 (16) Å with a dihedral angle between planes = 2.31 (12) ° for symmetry operation i: 1 - x, -y, 2 - z]. Layers stack in the crystal structure as illustrated in Fig. 3. As noted in the Experimental, ill-defined solvent, most probably methanol, was present in the crystal structure. These are located in the vicinity of the voids within the double layer.

Experimental

Solutions of 4-nitrophenylhydrazine (0.306 g, 2 mmol) in MeOH (25 ml) and 1,4-benzenedicarboxaldehyde (0.134 g, 1 mmol) in MeOH (15 ml) were mixed, and refluxed for 30 min. The reaction mixture was rotary evaporated and the residue was chromatographed on alumina using hexane/ethyl acetate [4:1] as eluent. The collected fraction of 1,4-bis-2-(4-nitrophenyl)hydrazone 1,4-benzenedicarboxaldehyde was recrystallized from MeOH, m.pt. 566–568 K. lit value 567–568 K (Bengelsdorf, 1958). IR (KBr, cm-1): ν 3261, 1608, 1587, 1556, 1498, 1469, 1321, 1309, 1293, 1271, 1173, 1105, 1086, 998, 929, 839, 750, 694, 585, 530, 489, 435.

Refinement

The N– and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O–H atoms were located in a difference map and refined with the distance restraint O–H = 0.84±0.01 and with Uiso(H) = 1.5Ueq(N). Unresolved disordered solvent was evident in the final cycles of the refinement. This was modelled with the SQUEEZE option in PLATON (Spek, 2009); the solvent cavity had volume 76 Å3. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight, and the formula are given without taking into account the contribution of the solvent molecule.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of the supramolecular 2-D array in (I) mediated by O–H···O and N–H···O hydrogen bonding shown as orange and blue dashed lines, respectively. Additional C–H···O ...
Fig. 3.
A view of the stacking of layers (illustrated in Fig. 2) in (I) with the O–H···O hydrogen bonding connecting the layers shown as orange dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.

Crystal data

C20H16N6O4·2H2OZ = 2
Mr = 440.42F(000) = 460
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7549 (4) ÅCell parameters from 4364 reflections
b = 9.3245 (7) Åθ = 2.9–27.5°
c = 15.3374 (11) ŵ = 0.11 mm1
α = 100.749 (3)°T = 120 K
β = 90.533 (4)°Block, dark-red
γ = 103.131 (5)°0.38 × 0.22 × 0.07 mm
V = 1059.56 (12) Å3

Data collection

Nonius KappaCCD area-detector diffractometer3688 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode2638 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.039
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
[var phi] and ω scansh = −9→8
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −11→11
Tmin = 0.770, Tmax = 1.000l = −18→18
16566 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0852P)2 + 0.5693P] where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.45 e Å3
6 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.2175 (2)−0.6067 (2)1.41897 (13)0.0387 (5)
O2−0.3174 (3)−0.6708 (2)1.28198 (14)0.0421 (5)
O31.1204 (2)0.9370 (2)0.69699 (13)0.0388 (5)
O40.9881 (2)0.8999 (2)0.56744 (12)0.0340 (5)
N1−0.2205 (3)−0.5823 (2)1.34244 (16)0.0314 (5)
N20.2344 (3)−0.0749 (2)1.26201 (14)0.0285 (5)
H2N0.3112−0.01491.30300.034*
N30.2300 (3)−0.0459 (2)1.17772 (14)0.0279 (5)
N40.5188 (3)0.3449 (2)0.80714 (13)0.0268 (5)
N50.5234 (3)0.3707 (2)0.72248 (13)0.0272 (5)
H5N0.45080.30890.68030.033*
N61.0012 (3)0.8658 (2)0.64104 (14)0.0281 (5)
C1−0.1068 (3)−0.4476 (3)1.32299 (17)0.0264 (6)
C20.0140 (3)−0.3527 (3)1.38838 (18)0.0298 (6)
H20.0190−0.37401.44640.036*
C30.1262 (3)−0.2277 (3)1.36776 (17)0.0275 (6)
H30.2084−0.16181.41190.033*
C40.1193 (3)−0.1974 (3)1.28162 (16)0.0250 (6)
C5−0.0061 (3)−0.2935 (3)1.21764 (18)0.0312 (6)
H5−0.0141−0.27211.15970.037*
C6−0.1168 (4)−0.4174 (3)1.23830 (19)0.0330 (6)
H6−0.2005−0.48291.19460.040*
C70.3492 (3)0.0666 (3)1.16298 (17)0.0285 (6)
H70.43290.12301.20940.034*
C80.3571 (3)0.1086 (3)1.07560 (17)0.0270 (6)
C90.4848 (4)0.2336 (3)1.06298 (18)0.0371 (7)
H90.56280.29131.11140.044*
C100.4993 (4)0.2748 (3)0.98095 (18)0.0365 (7)
H100.58570.36170.97400.044*
C110.3902 (3)0.1917 (3)0.90894 (17)0.0267 (6)
C120.2590 (4)0.0692 (3)0.92239 (19)0.0399 (7)
H120.17920.01290.87430.048*
C130.2436 (4)0.0288 (3)1.00415 (19)0.0400 (7)
H130.1535−0.05541.01170.048*
C140.4076 (3)0.2275 (3)0.82018 (17)0.0274 (6)
H140.33560.16280.77160.033*
C150.6399 (3)0.4935 (3)0.70347 (16)0.0246 (6)
C160.7616 (3)0.5904 (3)0.76914 (16)0.0259 (6)
H160.76250.57210.82800.031*
C170.8788 (3)0.7112 (3)0.74798 (17)0.0267 (6)
H170.96260.77570.79200.032*
C180.8752 (3)0.7394 (3)0.66236 (17)0.0251 (6)
C190.7543 (3)0.6461 (3)0.59689 (17)0.0275 (6)
H190.75150.66700.53870.033*
C200.6385 (3)0.5231 (3)0.61741 (17)0.0274 (6)
H200.55690.45770.57270.033*
O1W0.3412 (2)0.1327 (2)0.56735 (12)0.0346 (5)
H1W0.2326 (16)0.095 (3)0.565 (2)0.052*
H2W0.386 (4)0.141 (4)0.5191 (12)0.052*
O2W0.4975 (2)0.9015 (2)0.59601 (13)0.0349 (5)
H3W0.434 (3)0.961 (3)0.590 (2)0.052*
H4W0.429 (3)0.826 (2)0.609 (2)0.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0431 (11)0.0390 (12)0.0363 (12)0.0049 (9)0.0133 (9)0.0185 (9)
O20.0404 (11)0.0315 (11)0.0495 (13)−0.0048 (9)−0.0040 (10)0.0116 (10)
O30.0373 (11)0.0373 (11)0.0372 (12)−0.0057 (9)−0.0012 (9)0.0132 (9)
O40.0418 (11)0.0321 (11)0.0311 (11)0.0050 (8)0.0072 (8)0.0175 (8)
N10.0298 (12)0.0267 (12)0.0424 (15)0.0093 (10)0.0104 (10)0.0146 (11)
N20.0320 (12)0.0277 (12)0.0272 (12)0.0028 (9)0.0048 (9)0.0136 (9)
N30.0344 (12)0.0279 (12)0.0247 (12)0.0085 (10)0.0076 (9)0.0115 (9)
N40.0301 (12)0.0279 (12)0.0259 (12)0.0073 (9)0.0064 (9)0.0129 (9)
N50.0301 (12)0.0277 (12)0.0227 (12)0.0000 (9)0.0038 (9)0.0106 (9)
N60.0319 (12)0.0258 (12)0.0296 (13)0.0075 (10)0.0078 (10)0.0115 (10)
C10.0244 (13)0.0230 (13)0.0345 (15)0.0062 (11)0.0077 (11)0.0110 (11)
C20.0325 (14)0.0327 (15)0.0309 (15)0.0132 (12)0.0116 (11)0.0155 (12)
C30.0282 (14)0.0284 (14)0.0279 (14)0.0059 (11)0.0065 (11)0.0108 (11)
C40.0262 (13)0.0246 (13)0.0278 (14)0.0089 (10)0.0078 (10)0.0095 (11)
C50.0352 (15)0.0308 (15)0.0302 (15)0.0045 (12)0.0016 (12)0.0161 (12)
C60.0336 (15)0.0291 (15)0.0368 (16)0.0054 (12)−0.0007 (12)0.0102 (12)
C70.0289 (14)0.0270 (14)0.0300 (15)0.0029 (11)0.0040 (11)0.0111 (11)
C80.0278 (14)0.0264 (14)0.0296 (14)0.0070 (11)0.0068 (11)0.0115 (11)
C90.0369 (15)0.0376 (16)0.0303 (16)−0.0083 (12)−0.0002 (12)0.0116 (12)
C100.0377 (16)0.0336 (15)0.0336 (16)−0.0077 (12)0.0036 (12)0.0146 (13)
C110.0275 (13)0.0264 (14)0.0299 (15)0.0074 (11)0.0068 (11)0.0132 (11)
C120.0414 (16)0.0389 (17)0.0334 (16)−0.0101 (13)−0.0032 (12)0.0157 (13)
C130.0405 (16)0.0368 (16)0.0383 (17)−0.0111 (13)0.0025 (13)0.0206 (13)
C140.0300 (14)0.0240 (14)0.0284 (14)0.0030 (11)0.0031 (11)0.0095 (11)
C150.0257 (13)0.0219 (13)0.0287 (14)0.0074 (10)0.0074 (10)0.0088 (11)
C160.0298 (14)0.0286 (14)0.0220 (13)0.0084 (11)0.0061 (10)0.0097 (11)
C170.0283 (14)0.0256 (14)0.0264 (14)0.0049 (11)0.0033 (10)0.0073 (11)
C180.0248 (13)0.0227 (13)0.0312 (15)0.0066 (10)0.0080 (11)0.0121 (11)
C190.0327 (14)0.0280 (14)0.0259 (14)0.0085 (11)0.0073 (11)0.0131 (11)
C200.0295 (14)0.0263 (14)0.0264 (14)0.0035 (11)0.0028 (11)0.0090 (11)
O1W0.0327 (11)0.0375 (11)0.0319 (11)0.0007 (9)0.0043 (8)0.0118 (9)
O2W0.0358 (11)0.0304 (11)0.0409 (12)0.0022 (8)0.0049 (9)0.0192 (9)

Geometric parameters (Å, °)

O1—N11.238 (3)C8—C131.382 (4)
O2—N11.235 (3)C8—C91.393 (4)
O3—N61.235 (3)C9—C101.381 (4)
O4—N61.237 (3)C9—H90.9500
N1—C11.444 (3)C10—C111.379 (4)
N2—C41.364 (3)C10—H100.9500
N2—N31.371 (3)C11—C121.395 (4)
N2—H2N0.8796C11—C141.461 (3)
N3—C71.288 (3)C12—C131.374 (4)
N4—C141.280 (3)C12—H120.9500
N4—N51.364 (3)C13—H130.9500
N5—C151.368 (3)C14—H140.9500
N5—H5N0.8799C15—C201.398 (3)
N6—C181.442 (3)C15—C161.406 (4)
C1—C61.384 (4)C16—C171.370 (3)
C1—C21.393 (4)C16—H160.9500
C2—C31.377 (3)C17—C181.388 (3)
C2—H20.9500C17—H170.9500
C3—C41.405 (3)C18—C191.389 (4)
C3—H30.9500C19—C201.376 (3)
C4—C51.404 (4)C19—H190.9500
C5—C61.365 (4)C20—H200.9500
C5—H50.9500O1W—H1W0.833 (10)
C6—H60.9500O1W—H2W0.831 (10)
C7—C81.463 (3)O2W—H3W0.839 (10)
C7—H70.9500O2W—H4W0.836 (10)
O2—N1—O1121.7 (2)C10—C9—C8120.9 (3)
O2—N1—C1119.1 (2)C10—C9—H9119.6
O1—N1—C1119.3 (2)C8—C9—H9119.6
C4—N2—N3119.5 (2)C9—C10—C11120.9 (2)
C4—N2—H2N120.4C9—C10—H10119.5
N3—N2—H2N120.1C11—C10—H10119.5
C7—N3—N2115.9 (2)C10—C11—C12118.1 (2)
C14—N4—N5116.7 (2)C10—C11—C14122.4 (2)
N4—N5—C15119.9 (2)C12—C11—C14119.5 (2)
N4—N5—H5N119.9C13—C12—C11121.0 (3)
C15—N5—H5N120.2C13—C12—H12119.5
O3—N6—O4121.8 (2)C11—C12—H12119.5
O3—N6—C18118.8 (2)C12—C13—C8121.0 (2)
O4—N6—C18119.5 (2)C12—C13—H13119.5
C6—C1—C2121.1 (2)C8—C13—H13119.5
C6—C1—N1119.0 (2)N4—C14—C11120.8 (2)
C2—C1—N1119.9 (2)N4—C14—H14119.6
C3—C2—C1119.2 (2)C11—C14—H14119.6
C3—C2—H2120.4N5—C15—C20119.6 (2)
C1—C2—H2120.4N5—C15—C16121.0 (2)
C2—C3—C4120.2 (2)C20—C15—C16119.4 (2)
C2—C3—H3119.9C17—C16—C15119.8 (2)
C4—C3—H3119.9C17—C16—H16120.1
N2—C4—C3119.3 (2)C15—C16—H16120.1
N2—C4—C5121.4 (2)C16—C17—C18120.1 (2)
C3—C4—C5119.3 (2)C16—C17—H17120.0
C6—C5—C4120.3 (2)C18—C17—H17120.0
C6—C5—H5119.9C17—C18—C19120.9 (2)
C4—C5—H5119.9C17—C18—N6119.3 (2)
C5—C6—C1119.9 (3)C19—C18—N6119.8 (2)
C5—C6—H6120.0C20—C19—C18119.2 (2)
C1—C6—H6120.0C20—C19—H19120.4
N3—C7—C8120.8 (2)C18—C19—H19120.4
N3—C7—H7119.6C19—C20—C15120.6 (2)
C8—C7—H7119.6C19—C20—H20119.7
C13—C8—C9118.1 (2)C15—C20—H20119.7
C13—C8—C7122.8 (2)H1W—O1W—H2W117 (3)
C9—C8—C7119.1 (2)H3W—O2W—H4W106 (3)
C4—N2—N3—C7−176.2 (2)C9—C10—C11—C14−176.8 (2)
C14—N4—N5—C15−179.5 (2)C10—C11—C12—C13−2.6 (4)
O2—N1—C1—C63.6 (3)C14—C11—C12—C13177.3 (3)
O1—N1—C1—C6−177.0 (2)C11—C12—C13—C80.3 (5)
O2—N1—C1—C2−174.6 (2)C9—C8—C13—C121.6 (4)
O1—N1—C1—C24.8 (3)C7—C8—C13—C12−177.9 (3)
C6—C1—C2—C3−0.6 (4)N5—N4—C14—C11−178.8 (2)
N1—C1—C2—C3177.6 (2)C10—C11—C14—N4−4.7 (4)
C1—C2—C3—C4−0.5 (4)C12—C11—C14—N4175.3 (2)
N3—N2—C4—C3179.1 (2)N4—N5—C15—C20−177.1 (2)
N3—N2—C4—C5−1.1 (3)N4—N5—C15—C163.0 (3)
C2—C3—C4—N2−178.5 (2)N5—C15—C16—C17178.9 (2)
C2—C3—C4—C51.7 (4)C20—C15—C16—C17−0.9 (4)
N2—C4—C5—C6178.3 (2)C15—C16—C17—C181.2 (4)
C3—C4—C5—C6−1.9 (4)C16—C17—C18—C19−0.3 (4)
C4—C5—C6—C10.8 (4)C16—C17—C18—N6−179.1 (2)
C2—C1—C6—C50.5 (4)O3—N6—C18—C177.1 (3)
N1—C1—C6—C5−177.7 (2)O4—N6—C18—C17−173.2 (2)
N2—N3—C7—C8−179.8 (2)O3—N6—C18—C19−171.7 (2)
N3—C7—C8—C13−2.3 (4)O4—N6—C18—C197.9 (3)
N3—C7—C8—C9178.2 (2)C17—C18—C19—C20−0.9 (4)
C13—C8—C9—C10−1.1 (4)N6—C18—C19—C20177.9 (2)
C7—C8—C9—C10178.4 (2)C18—C19—C20—C151.2 (4)
C8—C9—C10—C11−1.3 (4)N5—C15—C20—C19179.9 (2)
C9—C10—C11—C123.1 (4)C16—C15—C20—C19−0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1w···O4i0.833 (17)2.32 (2)3.084 (2)153 (2)
O1W—H2w···O2wii0.83 (2)2.01 (2)2.808 (3)163 (3)
N5—H5n···O1w0.882.173.021 (3)163
O2W—H3w···O1wiii0.84 (3)1.98 (3)2.800 (3)165 (3)
O2W—H4w···O1iv0.84 (2)2.28 (2)3.061 (3)156 (3)
O2W—H4w···O2iv0.84 (2)2.45 (2)3.204 (3)150 (3)
N2—H2n···O2wv0.882.092.959 (3)172
C7—H7···O2vi0.952.483.374 (3)157
C14—H14···O3i0.952.453.338 (3)156

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x, −y, −z+2; (v) −x+1, −y+1, −z+2; (vi) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2618).

References

  • Baddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr.224, 213–224.
  • Bengelsdorf, I. S. (1958). J. Am. Chem. Soc.23, 243–246.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616. [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666–675. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Low, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816–o1818.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2204–o2206.
  • Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o10–o14. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography