PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o249.
Published online 2009 December 24. doi:  10.1107/S1600536809054816
PMCID: PMC2980146

(4Z)-4-[(4-Chloro­anilino)(phen­yl)methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Abstract

The title compound, C23H18ClN3O, was synthesized by the reaction of 4-chloro­aniline and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one. The terminal benzene rings are twisted at dihedral angles of 48.3 (2), 71.4 (2) and 36.1 (2)° with respect to the central eight-atom methyl­pyrazolone/amino­methyl­ene unit. An intra­molecular N—H(...)O hydrogen bond stabilizes the planar conformation [mean deviation = 0.0398 (5) Å] of the central unit, generating an S(6) ring motif. The crystal packing is stabilized by van der Waals forces.

Related literature

For the properties of β-enamino­ketones, see: Li et al. (2000 [triangle]); Zhang et al. (2003 [triangle], 2008 [triangle]); Cingolani et al. (2006 [triangle]); Marchetti et al. (2005 [triangle]). For the preparation of β-enamino­ketones, see: Yang et al. (2004 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o249-scheme1.jpg

Experimental

Crystal data

  • C23H18ClN3O
  • M r = 387.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o249-efi1.jpg
  • a = 7.4305 (15) Å
  • b = 11.069 (2) Å
  • c = 13.518 (3) Å
  • α = 109.28 (3)°
  • β = 98.78 (3)°
  • γ = 105.08 (3)°
  • V = 978.0 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 293 K
  • 0.34 × 0.31 × 0.09 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.921, T max = 0.985
  • 7818 measured reflections
  • 3506 independent reflections
  • 2198 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.142
  • S = 1.05
  • 3506 reflections
  • 259 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054816/si2229sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054816/si2229Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the Xinmiao Project in the Science and Technology Department of Zhejiang Province (2008R40G2060018).

supplementary crystallographic information

Comment

The 4-acyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-ones are a novel type of β-enaminoketone (Yang et al., 2004) with a heterocyclic structure, which have the strong coordination to be as the extractants of trace metals, laser materials, shift reagents in NMR and so on [Marchetti et al., 2005]. Apart from the similar capacity of the selective coordination with many metals [Zhang et al., 2008; Cingolani et al., 2006], the Schiff's base derivatives of 4-acyl-3-methyl- 1-phenyl-1H-pyrazol-5(4H)-ones have also exhibited their special photoluminescence [Zhang et al., 2003] and bioactivities [Li et al., 2000]. As a part of work interested in the complexes with these Schiff's bases, we herein report the preparation of the title compound and its corresponding crystal structure.

The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges. The terminal benzene rings [C1–C6, C8–C13 and C18–C23] are twisted at dihedral angles of 48.3 (2), 71.4 (2) and 36.1 (2) ° with respect to the central eight atom methylpyrazolone/aminomethylene unit [mean deviation = 0.0398 (5) Å]. An intramolecular N—H···O hydrogen bond generating an S(6) ring is observed [Bernstein et al., 1995]. The crystal packing is stabilized by van der Waals forces.

Experimental

The solution of 4-chloroaniline (1.2 mmol) and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol- 5(4H)-one (1 mmol) in ethanol (10 mL) was refluxed for 5 h and the yellow precipitate was gradually formed. After cooled to the room temperature, the mixture was filtrated and the collected solid was washed with additional ethanol and dried in the air. Suitable crystals were obtained by evaporation of an ethanol/dichloromethane(1:1) mixed solution (m.p. 488–489 K).

Refinement

The structures were solved by Direct methods and using Fourier techniques. The non-hydrogen atoms were refined anisotropically. All H-atoms were placed in idealized locations with C–H distances 0.93 - 0.96 Å and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 times Ueq(bearing atom).

Figures

Fig. 1.
View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.

Crystal data

C23H18ClN3OZ = 2
Mr = 387.85F(000) = 404
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4305 (15) ÅCell parameters from 5058 reflections
b = 11.069 (2) Åθ = 3.1–27.5°
c = 13.518 (3) ŵ = 0.21 mm1
α = 109.28 (3)°T = 293 K
β = 98.78 (3)°Platelet, yellow
γ = 105.08 (3)°0.34 × 0.31 × 0.09 mm
V = 978.0 (5) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer3506 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 3.1°
ω scansh = −8→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.921, Tmax = 0.985l = −16→16
7818 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142w = 1/[σ2(Fo2) + (0.0617P)2 + 0.2511P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3506 reflectionsΔρmax = 0.61 e Å3
259 parametersΔρmin = −0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.15532 (15)0.75138 (11)0.40321 (8)0.0994 (4)
O10.4993 (3)1.13318 (17)0.73705 (15)0.0511 (5)
N10.6371 (3)0.9255 (2)0.66884 (17)0.0474 (6)
N20.3133 (3)1.10057 (19)0.85631 (17)0.0444 (5)
N30.2491 (3)1.0019 (2)0.89847 (17)0.0478 (6)
C10.9987 (4)0.7976 (3)0.4798 (2)0.0569 (8)
C20.8521 (4)0.8344 (3)0.4374 (2)0.0568 (8)
H20.83370.83270.36730.068*
C30.7319 (4)0.8742 (3)0.5007 (2)0.0482 (7)
H30.63130.89880.47250.058*
C40.7596 (4)0.8780 (2)0.6053 (2)0.0428 (6)
C50.9092 (4)0.8414 (3)0.6470 (2)0.0550 (7)
H50.92990.84500.71770.066*
C61.0273 (4)0.7997 (3)0.5837 (2)0.0610 (8)
H61.12620.77300.61090.073*
C70.5574 (4)0.8763 (2)0.73575 (19)0.0405 (6)
C80.5736 (4)0.7455 (2)0.7374 (2)0.0424 (6)
C90.4800 (4)0.6275 (3)0.6453 (2)0.0553 (8)
H90.40620.63050.58460.066*
C100.4969 (5)0.5063 (3)0.6442 (3)0.0709 (10)
H100.43340.42710.58280.085*
C110.6068 (6)0.5014 (3)0.7330 (3)0.0746 (10)
H110.61950.41930.73130.090*
C120.6985 (5)0.6180 (3)0.8250 (3)0.0647 (9)
H120.77230.61450.88550.078*
C130.6809 (4)0.7401 (3)0.8275 (2)0.0517 (7)
H130.74130.81850.88990.062*
C140.4532 (4)0.9448 (2)0.79664 (19)0.0398 (6)
C150.4324 (4)1.0689 (2)0.7907 (2)0.0413 (6)
C160.3330 (4)0.9113 (2)0.8635 (2)0.0433 (6)
C170.2877 (5)0.7911 (3)0.8946 (3)0.0597 (8)
H17A0.19110.79430.93420.090*
H17B0.40270.79270.93920.090*
H17C0.24040.70920.83020.090*
C180.2310 (4)1.2054 (2)0.8705 (2)0.0431 (6)
C190.3398 (5)1.3293 (3)0.8740 (2)0.0571 (8)
H190.46741.34520.87040.069*
C200.2567 (5)1.4296 (3)0.8829 (3)0.0682 (9)
H200.32881.51300.88450.082*
C210.0701 (5)1.4074 (3)0.8896 (2)0.0669 (9)
H210.01471.47470.89440.080*
C22−0.0349 (5)1.2852 (3)0.8891 (2)0.0640 (9)
H22−0.16091.27090.89530.077*
C230.0437 (4)1.1834 (3)0.8794 (2)0.0554 (7)
H23−0.02861.10080.87900.067*
H10.605 (4)1.002 (3)0.669 (2)0.067 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0867 (7)0.1399 (9)0.0781 (6)0.0596 (6)0.0465 (5)0.0223 (6)
O10.0581 (13)0.0564 (11)0.0614 (12)0.0307 (9)0.0305 (10)0.0351 (9)
N10.0555 (15)0.0529 (13)0.0502 (13)0.0312 (11)0.0243 (11)0.0253 (11)
N20.0529 (14)0.0436 (12)0.0490 (12)0.0244 (10)0.0232 (11)0.0225 (10)
N30.0531 (15)0.0520 (13)0.0505 (13)0.0245 (11)0.0226 (11)0.0254 (11)
C10.0485 (18)0.0643 (18)0.0495 (17)0.0193 (14)0.0190 (14)0.0085 (14)
C20.057 (2)0.0678 (18)0.0444 (15)0.0203 (15)0.0179 (14)0.0192 (14)
C30.0483 (17)0.0539 (16)0.0490 (16)0.0197 (13)0.0147 (13)0.0251 (13)
C40.0400 (16)0.0441 (14)0.0451 (14)0.0153 (12)0.0151 (12)0.0153 (12)
C50.0515 (18)0.0749 (19)0.0425 (15)0.0307 (15)0.0135 (13)0.0197 (14)
C60.0484 (18)0.079 (2)0.0564 (18)0.0333 (15)0.0126 (14)0.0184 (15)
C70.0394 (15)0.0438 (14)0.0387 (13)0.0177 (11)0.0065 (12)0.0152 (11)
C80.0470 (17)0.0422 (14)0.0445 (15)0.0221 (12)0.0190 (13)0.0163 (12)
C90.065 (2)0.0500 (16)0.0475 (16)0.0203 (14)0.0168 (14)0.0126 (13)
C100.101 (3)0.0409 (17)0.065 (2)0.0197 (17)0.035 (2)0.0109 (15)
C110.115 (3)0.0557 (19)0.090 (3)0.051 (2)0.064 (2)0.0407 (19)
C120.081 (2)0.075 (2)0.070 (2)0.0506 (18)0.0323 (18)0.0418 (18)
C130.0607 (19)0.0509 (16)0.0500 (16)0.0285 (14)0.0162 (14)0.0193 (13)
C140.0420 (16)0.0412 (14)0.0412 (13)0.0183 (11)0.0123 (12)0.0180 (11)
C150.0409 (16)0.0458 (14)0.0432 (14)0.0199 (12)0.0134 (12)0.0192 (12)
C160.0442 (16)0.0451 (14)0.0437 (14)0.0185 (12)0.0134 (12)0.0172 (12)
C170.068 (2)0.0565 (17)0.074 (2)0.0273 (15)0.0325 (16)0.0370 (15)
C180.0486 (17)0.0429 (14)0.0420 (14)0.0238 (12)0.0143 (12)0.0140 (11)
C190.063 (2)0.0514 (17)0.071 (2)0.0299 (15)0.0297 (16)0.0271 (15)
C200.090 (3)0.0549 (18)0.084 (2)0.0412 (18)0.044 (2)0.0351 (16)
C210.085 (3)0.069 (2)0.065 (2)0.0523 (19)0.0249 (18)0.0240 (16)
C220.052 (2)0.072 (2)0.0669 (19)0.0360 (17)0.0168 (15)0.0136 (16)
C230.0482 (18)0.0525 (16)0.0617 (18)0.0201 (13)0.0164 (14)0.0139 (14)

Geometric parameters (Å, °)

Cl1—C11.737 (3)C10—C111.370 (5)
O1—C151.244 (3)C10—H100.9300
N1—C71.337 (3)C11—C121.379 (5)
N1—C41.426 (3)C11—H110.9300
N1—H10.93 (3)C12—C131.381 (4)
N2—C151.374 (3)C12—H120.9300
N2—N31.403 (3)C13—H130.9300
N2—C181.419 (3)C14—C161.431 (4)
N3—C161.311 (3)C14—C151.448 (3)
C1—C21.369 (4)C16—C171.496 (4)
C1—C61.379 (4)C17—H17A0.9600
C2—C31.383 (4)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C3—C41.382 (4)C18—C191.380 (4)
C3—H30.9300C18—C231.380 (4)
C4—C51.382 (4)C19—C201.386 (4)
C5—C61.377 (4)C19—H190.9300
C5—H50.9300C20—C211.366 (5)
C6—H60.9300C20—H200.9300
C7—C141.393 (3)C21—C221.372 (4)
C7—C81.491 (3)C21—H210.9300
C8—C131.378 (4)C22—C231.377 (4)
C8—C91.389 (4)C22—H220.9300
C9—C101.376 (4)C23—H230.9300
C9—H90.9300
C7—N1—C4128.4 (2)C11—C12—C13120.0 (3)
C7—N1—H1110.4 (18)C11—C12—H12120.0
C4—N1—H1121.2 (18)C13—C12—H12120.0
C15—N2—N3112.28 (19)C8—C13—C12119.9 (3)
C15—N2—C18127.5 (2)C8—C13—H13120.0
N3—N2—C18119.5 (2)C12—C13—H13120.0
C16—N3—N2106.1 (2)C7—C14—C16132.6 (2)
C2—C1—C6121.1 (3)C7—C14—C15121.7 (2)
C2—C1—Cl1119.7 (2)C16—C14—C15105.3 (2)
C6—C1—Cl1119.2 (2)O1—C15—N2126.0 (2)
C1—C2—C3118.9 (3)O1—C15—C14129.5 (2)
C1—C2—H2120.6N2—C15—C14104.4 (2)
C3—C2—H2120.6N3—C16—C14111.7 (2)
C4—C3—C2120.8 (3)N3—C16—C17118.0 (2)
C4—C3—H3119.6C14—C16—C17130.3 (2)
C2—C3—H3119.6C16—C17—H17A109.5
C5—C4—C3119.6 (2)C16—C17—H17B109.5
C5—C4—N1121.8 (2)H17A—C17—H17B109.5
C3—C4—N1118.6 (2)C16—C17—H17C109.5
C6—C5—C4119.8 (3)H17A—C17—H17C109.5
C6—C5—H5120.1H17B—C17—H17C109.5
C4—C5—H5120.1C19—C18—C23120.3 (2)
C5—C6—C1119.9 (3)C19—C18—N2119.2 (2)
C5—C6—H6120.1C23—C18—N2120.5 (2)
C1—C6—H6120.1C18—C19—C20119.2 (3)
N1—C7—C14118.9 (2)C18—C19—H19120.4
N1—C7—C8118.6 (2)C20—C19—H19120.4
C14—C7—C8122.4 (2)C21—C20—C19120.7 (3)
C13—C8—C9119.8 (2)C21—C20—H20119.7
C13—C8—C7121.4 (2)C19—C20—H20119.7
C9—C8—C7118.8 (2)C20—C21—C22119.6 (3)
C10—C9—C8119.7 (3)C20—C21—H21120.2
C10—C9—H9120.2C22—C21—H21120.2
C8—C9—H9120.2C21—C22—C23120.9 (3)
C11—C10—C9120.5 (3)C21—C22—H22119.5
C11—C10—H10119.8C23—C22—H22119.5
C9—C10—H10119.8C22—C23—C18119.3 (3)
C10—C11—C12120.0 (3)C22—C23—H23120.4
C10—C11—H11120.0C18—C23—H23120.4
C12—C11—H11120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.93 (3)1.87 (3)2.701 (3)146 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2229).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Cingolani, A., Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W., Somers, N. & White, A. H. (2006). Polyhedron, 25, 124–133.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, J. Z., Li, G. & Yu, W. J. (2000). J. Rare Earths, 18, 233–236.
  • Marchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev.249, 2909–2945.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, Y., Wang, J. L., Li, A. X., Qiao, Y. H. & Miao, F. M. (2004). Acta Chim. Sin.62, 720–724.
  • Zhang, G. L., Dai, B. Q. & Li, J. Z. (2003). Chin. J. Inorg. Chem.19, 1331–1334.
  • Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem.24, 990–993.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography