PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o206–o207.
Published online 2009 December 19. doi:  10.1107/S160053680905363X
PMCID: PMC2980137

Methyl 7,8-diacet­oxy-11-oxo-5-(2-oxo­pyrrolidin-1-yl)-7,9-epoxy­cyclo­penta­[4,5]pyrido[1,2-a]quinoline-10-carboxyl­ate sesquihydrate

Abstract

The title compound, C26H28N2O9·1.5H2O, the product of an acid-catalysed Wagner–Meerwein skeletal rearrangement, crystallizes as a sesquihydrate with the O atom of one of the two independent water mol­ecules occupying a special position on a twofold axis. The organic mol­ecule comprises a fused penta­cyclic system containing two five-membered rings (cyclo­pentane and tetra­hydro­furan) and three six-membered rings (piperidinone, tetra­hydro­pyridine and benzene). The five-membered rings have the usual envelope conformations, and the central six-membered piperidinone and tetra­hydro­pyridine rings adopt boat and sofa conformations, respectively. In the crystal, there are three independent O—H(...)O hydrogen bonds, which link the organic mol­ecules and water mol­ecules into complex two-tier layers parallel to (001). The layers are further linked into a three-dimensional framework by attractive inter­molecular carbon­yl–carbonyl inter­actions.

Related literature

For general background to the use of acid-catalysed Wagner-Meerwein rearrangement of substituted 3,8-dioxatricyclo­[3.2.1.02,4]octa­nes (ep­oxy-7-oxabicyclo­[2.2.1]heptenes) in organic synthesis, see: Popp & McEwen (1958 [triangle]); Hogeveen & Van Krutchten (1979 [triangle]); Hanson (1991 [triangle]). For related structures, see: Jung & Street (1985 [triangle]); Keay et al. (1989 [triangle]); Zubkov et al. (2004 [triangle], 2007 [triangle], 2009 [triangle]); Gurbanov et al. (2009 [triangle]). For carbon­yl–carbonyl inter­actions, see: Allen et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o206-scheme1.jpg

Experimental

Crystal data

  • C26H28N2O9·1.5H2O
  • M r = 539.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o206-efi1.jpg
  • a = 16.8557 (5) Å
  • b = 9.9692 (3) Å
  • c = 29.6704 (8) Å
  • β = 90.035 (1)°
  • V = 4985.7 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.969, T max = 0.979
  • 29541 measured reflections
  • 6460 independent reflections
  • 5531 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 1.00
  • 6460 reflections
  • 351 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905363X/ya2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905363X/ya2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

supplementary crystallographic information

Comment

Acid catalyzed Wagner-Meerwein rearrangement of substituted 3,8-dioxatricyclo[3.2.1.02,4]octanes (epoxy-7-oxabicyclo[2.2.1]heptenes) is used extensively in organic synthesis (Popp & McEwen,1958; Hogeveen & Van Krutchten, 1979; Hanson, 1991). However, with the exception of our works (Zubkov et al. 2004; Zubkov et al. 2009; Gurbanov et al. 2009), only a few examples of the skeletal rearrangement for 7-oxabicyclo[2.2.1]heptenes condensed with nitrogen-rings are known to date (Jung & Street, 1985; Keay et al. 1989). In particular, Wagner-Meerwein rearrangement in isoindolo[2,1-a]quinolines series has not been studied yet. The present work is meant to cover this gap. Hereunder, we report a new diastereoselective approach to 7,8-bis(acetyloxy)-5-R-7,9-epoxycyclopenta[4,5]pyrido[1,2-a]quinolines using 2-furyltetrahydroquinolines, readily accessible by Povarov reaction, as starting compounds (Zubkov et al. (2007)).

The structure of methyl 7,8-bis(acetyloxy)-11-oxo-5-(N-pyrrolidonyl)-7,9-epoxycyclopenta[4,5]pyrido[1,2-a]quinoline-10-carboxylate (I) was established by X-ray diffraction study (Fig. 1). Compound (I) crystallizes as sesquihydrate, i. e., C26H28N2O9.1.5H2O; one of the two independent water molecules occupies a special position on the twofold axis. Molecule of (I) comprises a fused pentacyclic system containing two five-membered rings (cyclopentane and tetrahydrofuran) and three six-membered rings (piperidinone, tetrahydropyridine and benzene). Both five-membered rings of the bicyclic fragment have usual envelope conformations, and the central six-membered piperidinone and tetrahydropyridine rings adopt the boat and sofa conformations, respectively. The nitrogen N12 atom has a trigonal-planar geometry (sum of the bond angles is 359.5°). The dihedral angle between the planes of the piperidinone (or rather "bottom of the boat" C6A, C7, C10A, C11 plane) and benzene is 38.81 (3)°. The two carboxylate substituents at the C7 and C8 carbon atoms are in the sterically unfavorable syn-periplanar configuration relative to the tetrahydrofuran ring. Such disposition is explained by the direction of the Wagner-Meerwein rearrangement.

The pyrrolidinone ligand and carboxylate substituent at the C10 atom are on the same side of the core pentacyclic framework. It is noteworthy that these fragments are engaged in the attractive intermolecular carbonyl-carbonyl interactions C13═O1···C17i═ O3i and C19═O5···C11ii═ O8ii [O1···C17i 2.947 (1) Å, O5···C11ii 2.993 (1) Å; symmetry codes: (i) -x, y, 1/2 - z; (ii) -x, 1 - y, 1 - z]. Carbonyl-carbonyl interactions of such type were investigated in substantial detail by Allen et al. (1998).

The molecule of (I) possesses eight asymmetric centers at the C5, C6A, C7, C7A, C8, C9, C10 and C10A atoms and can have potentially numerous diastereomers. The crystal of (I) is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-5S*,6aS*,7R*,7aR*,8R*,9S*,10S*,10aR*.

There are three independent H-bonds (Table 1), which link the molecules of (I) and water molecules into complex two-tier layers parallel to (001) (Fig. 2). The layers are linked further into three-dimensional framework by the above-mentioned attractive intermolecular carbonyl-carbonyl interactions.

Experimental

Boron trifluoride etherate (0.3 ml, 2.4 mmol) was added to a solution of methyl (1aR*,2R*,3R*,3aS*,10R*,11aR*,11bR*,11cR*)-4-oxo-10-(2-oxopyrrolidin-1-yl)-1a,2,3,3a,4,11,11a,11c-octahydro-10H-2,11b-epoxyoxireno[6,7]isoindolo[2,1-a]quinoline-3-carboxylate (0.51 g, 1.2 mmol) in 15 ml of acetic anhydride. The mixture was stirred for 2 h at 296 K, then it was diluted with 100 ml of water and treated with a saturated solution of sodium carbonate until pH ~ 8–9. Organic products were extracted with chloroform (3 x 50 ml). The extract was dried (MgSO4), concentrated and purified by crystallization from hexane-ethyl acetate to give 0.41 g (0.8 mmol) of the polycycle (I) as colourless rhomboid-shaped blocks (Fig. 3). Yield is 67%. The single crystals of product (I) were obtained by slow crystallization from a mixture of 95% ethanol-DMF (yield 30%). M.p. = 460–462 K. IR, ν (cm-1): 1673, 1744 (NCO, CO2Me, COMe). Mass spectrum, m/z (Ir(%)): 512 [M+] (3), 452 (100), 397 (38), 363 (32), 308 (31), 280 (55), 265 (28), 248 (22), 213 (47), 196 (25), 130 (86), 43 (62). 1H NMR (CDCl3, 293 K): δ = 7.87 (dd, 1H, H1, J1,2 = 8.4, J1,3 = 1.2), 7.18 (ddd, 1H, H2, J1,2 = 8.4, J2,3 = 6.9, J2,4 = 2.0), 7.06 (ddd, 1H, H3, J3,4 = 7.9, J2,3 = 6.9, J1,3 = 1.2), 7.02 (d, 1H, H4, J3,4 = 7.9, J2,4 = 2.0), 5.56 (dd, 1H, H5, J5,6 A = 11.3, J5,6B = 8.2), 4.93 (d, 1H, H8, J7a,8 = 1.9), 4.76 (bs, 1H, H9), 4.22 (dd, 1H, H6a, J6a,6 A = 12.0, J6a,6B = 1.7), 4.05 (dd, 1H, H7a, J7a,10a = 4.7, J7a,8 = 1.9), 3.59 (s, 3H, CO2Me), 3.36 (dd, 1H, H10a, J7a,10a = 4.7, J10,10a = 11.3), 3.33 (m, 1H, H5A'), 3.23 (d, 1H, H10, J10,10a = 11.3), 3.00 (m, 1H, H5B'), 2.54 (ddd, 1H, H6A, J6 A,6B = 13.3, J6a,6 A = 12.0, J5,6 A = 11.3), 2.43 (m, 2H, H3'), 2.28 (ddd, 1H, H6B, J6 A,6B = 13.3, J5,6B = 8.2, J6a,6B = 1.7), 2.07 (s, 3H, COMe), 2.05 (s, 3H, COMe), 1.93 (m, 2H, H4'). 13C NMR (CDC13, 293 K): δ = 175.5 (s, C2'), 169.1, 169.7 (s, COMe), 168.3 (s, CO2Me), 165.0 (s, C11), 137.9 (s, C12a), 127.6 (d, C4, J = 158.6), 127.3 (d, C2, J = 161.4), 126.4 (s, C4a), 125.5 (d, C3, J = 162.0), 125.1 (d, C1, J = 165.7), 106.2 (s, C7), 81.4 (d, C9, J = 172.0), 76.3 (d, C8, J = 159.0), 58.5 (d, C6a, J = 142.7), 52.1 (q, CO2Me, J = 147.7), 47.6 (d, C5, J = 139.0), 46.4 (d, C10, J = 139.0), 42.0 (t, C5', J = 145.0), 41.3 (d, C7a, J = 158.5), 39.3 (d, C10a, J = 143.5), 31.1 (t, C3', J = 133.0), 25.2 (t, C6, J = 134.0), 20.6, 21.7 (q, COMe, J = 130.2), 17.8 (t, C4', J = 134.0).

Refinement

The hydrogen atoms of the solvate water molecules were located in the difference Fourier map; C-bound H atoms were placed geometrically (C—H 0.95 Å, 0.98 Å, 0.99 Å, and 1.00 Å for aromatic, methyl, methylene and methine H atoms respectively) and included in the refinement in riding motion approximation [Uiso(H) = 1.2Ueq(C) for non-methyl H atoms; Uiso(H) = 1.5Ueq of the caryying atom for methyl and O-bound H atoms].

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines show intermolecular hydrogen bonds.
Fig. 2.
Crystal packing of the title compound viewed down the b axis. Dashed lines show intermolecular hydrogen bonds.
Fig. 3.
Wagner-Meerwein skeletal rearrangement of methyl 4-oxo-10-(2-oxopyrrolidinyl)-10H-2,11b-epoxyoxireno[6,7]isoindolo[2,1-a]quinoline-3-carboxylate.

Crystal data

C26H28N2O9·1.5H2OF(000) = 2280
Mr = 539.53Dx = 1.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9578 reflections
a = 16.8557 (5) Åθ = 2.4–28.6°
b = 9.9692 (3) ŵ = 0.11 mm1
c = 29.6704 (8) ÅT = 100 K
β = 90.035 (1)°Prism, colourless
V = 4985.7 (2) Å30.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer6460 independent reflections
Radiation source: fine-focus sealed tube5531 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 28.7°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −22→22
Tmin = 0.969, Tmax = 0.979k = −13→13
29541 measured reflectionsl = −40→40

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.106H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.054P)2 + 5.5P] where P = (Fo2 + 2Fc2)/3
6460 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.08324 (6)0.49746 (10)0.20077 (3)0.0214 (2)
O20.00452 (5)0.32130 (8)0.37846 (3)0.01336 (17)
O3−0.08727 (5)0.45915 (10)0.40862 (3)0.01900 (19)
O40.03384 (5)0.19384 (8)0.45989 (3)0.01436 (18)
O5−0.02640 (6)0.27537 (10)0.52181 (3)0.0218 (2)
O60.28555 (5)0.48346 (9)0.38299 (3)0.01877 (19)
O70.33899 (5)0.31262 (10)0.42233 (3)0.0201 (2)
O80.20831 (5)0.72008 (9)0.43497 (3)0.01602 (18)
O130.13523 (5)0.30526 (8)0.38994 (3)0.01262 (17)
N10.15989 (6)0.61656 (11)0.25045 (3)0.0150 (2)
N120.11703 (6)0.63699 (10)0.38547 (3)0.01132 (19)
C10.10122 (7)0.88174 (12)0.37973 (4)0.0144 (2)
H1A0.10860.89000.41140.017*
C20.08267 (7)0.99401 (13)0.35419 (5)0.0178 (2)
H2A0.07711.07880.36840.021*
C30.07217 (8)0.98311 (13)0.30770 (5)0.0193 (3)
H3A0.05851.05960.29030.023*
C40.08197 (7)0.85918 (13)0.28724 (4)0.0173 (2)
H4A0.07620.85210.25550.021*
C4A0.10008 (7)0.74439 (12)0.31227 (4)0.0135 (2)
C50.10420 (7)0.60998 (12)0.28818 (4)0.0133 (2)
H5A0.05050.59340.27500.016*
C60.12172 (7)0.49241 (12)0.31990 (4)0.0137 (2)
H6A0.10260.40740.30650.016*
H6B0.17950.48470.32520.016*
C6A0.07874 (7)0.52004 (11)0.36417 (4)0.0113 (2)
H6C0.02340.54760.35630.014*
C70.07219 (7)0.39834 (11)0.39507 (4)0.0114 (2)
C7A0.07365 (7)0.43157 (11)0.44532 (4)0.0116 (2)
H7A0.02540.47720.45760.014*
C80.09388 (7)0.29490 (12)0.46591 (4)0.0131 (2)
H8A0.11060.30290.49810.016*
C90.16441 (7)0.27200 (12)0.43475 (4)0.0131 (2)
H9A0.19010.18190.43740.016*
C100.21730 (7)0.39149 (12)0.44830 (4)0.0132 (2)
H10A0.24090.37410.47870.016*
C10A0.15354 (7)0.50606 (12)0.45219 (4)0.0119 (2)
H10B0.15440.53760.48420.014*
C110.16372 (7)0.62952 (12)0.42287 (4)0.0124 (2)
C12A0.10911 (7)0.75633 (12)0.35899 (4)0.0123 (2)
C130.14485 (7)0.55735 (13)0.21039 (4)0.0155 (2)
C140.21733 (8)0.57640 (14)0.18066 (4)0.0197 (3)
H14A0.20180.60140.14960.024*
H14B0.25000.49390.17970.024*
C150.26181 (8)0.69058 (14)0.20379 (5)0.0216 (3)
H15A0.24360.77900.19260.026*
H15B0.31970.68280.19900.026*
C160.24042 (8)0.67116 (14)0.25359 (5)0.0202 (3)
H16A0.27690.60730.26850.024*
H16B0.24110.75740.27010.024*
C17−0.07050 (7)0.35993 (12)0.38683 (4)0.0145 (2)
C18−0.12828 (8)0.26323 (14)0.36648 (5)0.0205 (3)
H18A−0.18160.28190.37800.031*
H18B−0.11310.17140.37450.031*
H18C−0.12800.27300.33360.031*
C19−0.02611 (7)0.19880 (12)0.49049 (4)0.0150 (2)
C20−0.09028 (8)0.09958 (14)0.47986 (5)0.0210 (3)
H20A−0.10020.04320.50630.032*
H20B−0.07360.04310.45450.032*
H20C−0.13900.14760.47180.032*
C210.28295 (7)0.40599 (12)0.41401 (4)0.0144 (2)
C220.40460 (8)0.30901 (15)0.39090 (5)0.0238 (3)
H22A0.44160.23770.39960.036*
H22B0.43220.39550.39130.036*
H22C0.38450.29140.36050.036*
O90.25847 (5)0.98922 (9)0.44722 (3)0.01930 (19)
H9B0.30640.98740.43500.029*
H9C0.24200.90890.44310.029*
O100.00000.28215 (16)0.25000.0342 (4)
H10C0.02620.33920.23130.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0179 (4)0.0277 (5)0.0185 (4)−0.0027 (4)0.0003 (3)−0.0069 (4)
O20.0130 (4)0.0114 (4)0.0157 (4)−0.0023 (3)−0.0013 (3)−0.0015 (3)
O30.0147 (4)0.0209 (5)0.0214 (5)0.0001 (3)0.0021 (3)−0.0032 (4)
O40.0158 (4)0.0125 (4)0.0148 (4)−0.0026 (3)0.0036 (3)−0.0001 (3)
O50.0213 (5)0.0226 (5)0.0214 (5)−0.0037 (4)0.0067 (4)−0.0056 (4)
O60.0165 (4)0.0191 (4)0.0208 (5)−0.0011 (3)0.0021 (3)0.0033 (4)
O70.0137 (4)0.0207 (5)0.0260 (5)0.0043 (3)0.0035 (4)0.0039 (4)
O80.0160 (4)0.0141 (4)0.0180 (4)−0.0033 (3)−0.0019 (3)−0.0005 (3)
O130.0133 (4)0.0111 (4)0.0134 (4)0.0024 (3)0.0011 (3)−0.0004 (3)
N10.0146 (5)0.0183 (5)0.0122 (5)−0.0034 (4)0.0021 (4)−0.0009 (4)
N120.0135 (5)0.0090 (4)0.0115 (4)−0.0016 (3)0.0002 (4)−0.0003 (3)
C10.0136 (5)0.0135 (5)0.0161 (5)−0.0005 (4)0.0003 (4)−0.0016 (4)
C20.0163 (6)0.0119 (5)0.0253 (6)−0.0001 (4)0.0005 (5)−0.0003 (5)
C30.0183 (6)0.0145 (6)0.0251 (7)0.0001 (5)−0.0018 (5)0.0062 (5)
C40.0172 (6)0.0187 (6)0.0161 (6)−0.0013 (5)−0.0015 (5)0.0031 (5)
C4A0.0116 (5)0.0144 (5)0.0145 (5)−0.0011 (4)0.0011 (4)0.0006 (4)
C50.0135 (5)0.0151 (5)0.0113 (5)−0.0015 (4)0.0013 (4)0.0000 (4)
C60.0166 (5)0.0120 (5)0.0125 (5)−0.0002 (4)0.0015 (4)−0.0012 (4)
C6A0.0128 (5)0.0100 (5)0.0112 (5)−0.0010 (4)−0.0001 (4)−0.0005 (4)
C70.0101 (5)0.0104 (5)0.0138 (5)−0.0013 (4)0.0006 (4)−0.0010 (4)
C7A0.0124 (5)0.0104 (5)0.0119 (5)−0.0008 (4)0.0011 (4)0.0001 (4)
C80.0137 (5)0.0113 (5)0.0144 (5)−0.0015 (4)0.0008 (4)0.0004 (4)
C90.0126 (5)0.0122 (5)0.0145 (5)0.0009 (4)0.0000 (4)0.0017 (4)
C100.0125 (5)0.0130 (5)0.0140 (5)0.0007 (4)−0.0005 (4)0.0008 (4)
C10A0.0123 (5)0.0119 (5)0.0115 (5)−0.0002 (4)−0.0003 (4)0.0002 (4)
C110.0116 (5)0.0128 (5)0.0127 (5)0.0008 (4)0.0019 (4)−0.0011 (4)
C12A0.0107 (5)0.0113 (5)0.0149 (5)−0.0004 (4)0.0008 (4)0.0016 (4)
C130.0176 (6)0.0154 (6)0.0135 (5)0.0022 (4)0.0011 (4)0.0009 (4)
C140.0200 (6)0.0225 (6)0.0167 (6)0.0002 (5)0.0058 (5)−0.0004 (5)
C150.0210 (6)0.0198 (6)0.0241 (7)−0.0025 (5)0.0083 (5)0.0002 (5)
C160.0159 (6)0.0231 (6)0.0215 (6)−0.0054 (5)0.0032 (5)−0.0035 (5)
C170.0134 (5)0.0158 (5)0.0143 (5)−0.0022 (4)0.0007 (4)0.0042 (4)
C180.0175 (6)0.0206 (6)0.0234 (6)−0.0071 (5)−0.0028 (5)0.0011 (5)
C190.0151 (5)0.0139 (5)0.0159 (6)0.0007 (4)0.0018 (4)0.0030 (4)
C200.0198 (6)0.0208 (6)0.0224 (6)−0.0065 (5)0.0024 (5)0.0001 (5)
C210.0122 (5)0.0137 (5)0.0173 (6)−0.0017 (4)−0.0012 (4)−0.0019 (4)
C220.0150 (6)0.0259 (7)0.0303 (7)0.0029 (5)0.0068 (5)−0.0008 (6)
O90.0175 (4)0.0153 (4)0.0252 (5)−0.0005 (3)0.0021 (4)−0.0030 (4)
O100.0438 (10)0.0258 (8)0.0331 (9)0.0000.0011 (7)0.000

Geometric parameters (Å, °)

O1—C131.2314 (16)C7—C7A1.5276 (16)
O2—C171.3453 (15)C7A—C81.5316 (16)
O2—C71.4605 (13)C7A—C10A1.5512 (16)
O3—C171.2151 (16)C7A—H7A1.0000
O4—C191.3597 (15)C8—C91.5237 (16)
O4—C81.4391 (14)C8—H8A1.0000
O5—C191.2027 (16)C9—C101.5410 (16)
O6—C211.2023 (15)C9—H9A1.0000
O7—C211.3488 (15)C10—C211.5107 (16)
O7—C221.4475 (16)C10—C10A1.5725 (16)
O8—C111.2282 (15)C10—H10A1.0000
O13—C71.4189 (14)C10A—C111.5171 (16)
O13—C91.4558 (14)C10A—H10B1.0000
N1—C131.3509 (16)C13—C141.5192 (17)
N1—C51.4629 (15)C14—C151.5258 (19)
N1—C161.4652 (16)C14—H14A0.9900
N12—C111.3620 (15)C14—H14B0.9900
N12—C12A1.4320 (15)C15—C161.5334 (19)
N12—C6A1.4747 (14)C15—H15A0.9900
C1—C21.3872 (17)C15—H15B0.9900
C1—C12A1.3999 (16)C16—H16A0.9900
C1—H1A0.9500C16—H16B0.9900
C2—C31.3948 (19)C17—C181.4972 (17)
C2—H2A0.9500C18—H18A0.9800
C3—C41.3865 (18)C18—H18B0.9800
C3—H3A0.9500C18—H18C0.9800
C4—C4A1.3979 (17)C19—C201.4991 (17)
C4—H4A0.9500C20—H20A0.9800
C4A—C12A1.3994 (17)C20—H20B0.9800
C4A—C51.5203 (17)C20—H20C0.9800
C5—C61.5316 (16)C22—H22A0.9800
C5—H5A1.0000C22—H22B0.9800
C6—C6A1.5256 (16)C22—H22C0.9800
C6—H6A0.9900O9—H9B0.8858
C6—H6B0.9900O9—H9C0.8567
C6A—C71.5248 (16)O10—H10C0.9089
C6A—H6C1.0000
C17—O2—C7121.40 (9)C21—C10—C9108.79 (10)
C19—O4—C8114.49 (9)C21—C10—C10A118.74 (10)
C21—O7—C22115.75 (10)C9—C10—C10A100.68 (9)
C7—O13—C9107.67 (8)C21—C10—H10A109.4
C13—N1—C5122.24 (10)C9—C10—H10A109.4
C13—N1—C16113.05 (10)C10A—C10—H10A109.4
C5—N1—C16124.25 (10)C11—C10A—C7A114.30 (9)
C11—N12—C12A123.10 (10)C11—C10A—C10118.02 (9)
C11—N12—C6A123.95 (10)C7A—C10A—C10103.65 (9)
C12A—N12—C6A112.39 (9)C11—C10A—H10B106.7
C2—C1—C12A120.12 (11)C7A—C10A—H10B106.7
C2—C1—H1A119.9C10—C10A—H10B106.7
C12A—C1—H1A119.9O8—C11—N12123.44 (11)
C1—C2—C3120.38 (12)O8—C11—C10A119.88 (11)
C1—C2—H2A119.8N12—C11—C10A116.49 (10)
C3—C2—H2A119.8C4A—C12A—C1120.08 (11)
C4—C3—C2119.17 (12)C4A—C12A—N12118.88 (10)
C4—C3—H3A120.4C1—C12A—N12120.64 (10)
C2—C3—H3A120.4O1—C13—N1125.01 (12)
C3—C4—C4A121.52 (12)O1—C13—C14127.19 (12)
C3—C4—H4A119.2N1—C13—C14107.80 (11)
C4A—C4—H4A119.2C13—C14—C15103.14 (10)
C4—C4A—C12A118.70 (11)C13—C14—H14A111.1
C4—C4A—C5118.80 (11)C15—C14—H14A111.1
C12A—C4A—C5122.39 (11)C13—C14—H14B111.1
N1—C5—C4A110.47 (10)C15—C14—H14B111.1
N1—C5—C6112.39 (10)H14A—C14—H14B109.1
C4A—C5—C6113.24 (10)C14—C15—C16102.90 (10)
N1—C5—H5A106.8C14—C15—H15A111.2
C4A—C5—H5A106.8C16—C15—H15A111.2
C6—C5—H5A106.8C14—C15—H15B111.2
C6A—C6—C5107.42 (9)C16—C15—H15B111.2
C6A—C6—H6A110.2H15A—C15—H15B109.1
C5—C6—H6A110.2N1—C16—C15101.78 (11)
C6A—C6—H6B110.2N1—C16—H16A111.4
C5—C6—H6B110.2C15—C16—H16A111.4
H6A—C6—H6B108.5N1—C16—H16B111.4
N12—C6A—C7113.78 (9)C15—C16—H16B111.4
N12—C6A—C6107.69 (9)H16A—C16—H16B109.3
C7—C6A—C6114.12 (9)O3—C17—O2123.39 (11)
N12—C6A—H6C106.9O3—C17—C18125.97 (12)
C7—C6A—H6C106.9O2—C17—C18110.64 (11)
C6—C6A—H6C106.9C17—C18—H18A109.5
O13—C7—O2101.80 (8)C17—C18—H18B109.5
O13—C7—C6A113.66 (9)H18A—C18—H18B109.5
O2—C7—C6A105.80 (9)C17—C18—H18C109.5
O13—C7—C7A103.59 (9)H18A—C18—H18C109.5
O2—C7—C7A117.11 (9)H18B—C18—H18C109.5
C6A—C7—C7A114.40 (9)O5—C19—O4122.84 (11)
C7—C7A—C8101.53 (9)O5—C19—C20125.32 (12)
C7—C7A—C10A104.21 (9)O4—C19—C20111.84 (11)
C8—C7A—C10A100.39 (9)C19—C20—H20A109.5
C7—C7A—H7A116.1C19—C20—H20B109.5
C8—C7A—H7A116.1H20A—C20—H20B109.5
C10A—C7A—H7A116.1C19—C20—H20C109.5
O4—C8—C9111.63 (9)H20A—C20—H20C109.5
O4—C8—C7A114.64 (10)H20B—C20—H20C109.5
C9—C8—C7A93.72 (9)O6—C21—O7123.89 (11)
O4—C8—H8A111.9O6—C21—C10127.16 (11)
C9—C8—H8A111.9O7—C21—C10108.90 (10)
C7A—C8—H8A111.9O7—C22—H22A109.5
O13—C9—C8104.88 (9)O7—C22—H22B109.5
O13—C9—C10104.91 (9)H22A—C22—H22B109.5
C8—C9—C10100.21 (9)O7—C22—H22C109.5
O13—C9—H9A115.1H22A—C22—H22C109.5
C8—C9—H9A115.1H22B—C22—H22C109.5
C10—C9—H9A115.1H9B—O9—H9C102.6
C12A—C1—C2—C3−0.36 (19)O13—C9—C10—C21−58.89 (11)
C1—C2—C3—C4−1.20 (19)C8—C9—C10—C21−167.43 (9)
C2—C3—C4—C4A1.69 (19)O13—C9—C10—C10A66.63 (10)
C3—C4—C4A—C12A−0.60 (19)C8—C9—C10—C10A−41.91 (10)
C3—C4—C4A—C5175.67 (11)C7—C7A—C10A—C1156.86 (12)
C13—N1—C5—C4A−139.61 (12)C8—C7A—C10A—C11161.69 (9)
C16—N1—C5—C4A48.66 (15)C7—C7A—C10A—C10−72.93 (10)
C13—N1—C5—C692.85 (14)C8—C7A—C10A—C1031.90 (11)
C16—N1—C5—C6−78.88 (14)C21—C10—C10A—C11−3.21 (15)
C4—C4A—C5—N154.92 (14)C9—C10—C10A—C11−121.72 (11)
C12A—C4A—C5—N1−128.96 (12)C21—C10—C10A—C7A124.30 (11)
C4—C4A—C5—C6−178.01 (11)C9—C10—C10A—C7A5.79 (11)
C12A—C4A—C5—C6−1.89 (16)C12A—N12—C11—O8−6.56 (18)
N1—C5—C6—C6A162.65 (10)C6A—N12—C11—O8164.24 (11)
C4A—C5—C6—C6A36.59 (13)C12A—N12—C11—C10A168.47 (10)
C11—N12—C6A—C719.28 (15)C6A—N12—C11—C10A−20.73 (16)
C12A—N12—C6A—C7−169.04 (9)C7A—C10A—C11—O8155.03 (11)
C11—N12—C6A—C6−108.25 (12)C10—C10A—C11—O8−82.73 (14)
C12A—N12—C6A—C663.42 (12)C7A—C10A—C11—N12−20.19 (14)
C5—C6—C6A—N12−67.46 (11)C10—C10A—C11—N12102.05 (12)
C5—C6—C6A—C7165.21 (9)C4—C4A—C12A—C1−0.99 (17)
C9—O13—C7—O2−114.71 (9)C5—C4A—C12A—C1−177.11 (11)
C9—O13—C7—C6A132.01 (10)C4—C4A—C12A—N12171.70 (11)
C9—O13—C7—C7A7.26 (11)C5—C4A—C12A—N12−4.43 (17)
C17—O2—C7—O13164.37 (9)C2—C1—C12A—C4A1.46 (18)
C17—O2—C7—C6A−76.61 (12)C2—C1—C12A—N12−171.09 (11)
C17—O2—C7—C7A52.24 (14)C11—N12—C12A—C4A145.01 (11)
N12—C6A—C7—O13−95.04 (11)C6A—N12—C12A—C4A−26.74 (15)
C6—C6A—C7—O1329.09 (13)C11—N12—C12A—C1−42.35 (16)
N12—C6A—C7—O2154.10 (9)C6A—N12—C12A—C1145.90 (11)
C6—C6A—C7—O2−81.77 (11)C5—N1—C13—O12.9 (2)
N12—C6A—C7—C7A23.68 (13)C16—N1—C13—O1175.47 (12)
C6—C6A—C7—C7A147.81 (10)C5—N1—C13—C14−176.14 (11)
O13—C7—C7A—C8−37.81 (11)C16—N1—C13—C14−3.56 (15)
O2—C7—C7A—C873.31 (11)O1—C13—C14—C15163.23 (13)
C6A—C7—C7A—C8−162.07 (9)N1—C13—C14—C15−17.77 (14)
O13—C7—C7A—C10A66.17 (10)C13—C14—C15—C1630.76 (13)
O2—C7—C7A—C10A177.28 (9)C13—N1—C16—C1523.13 (14)
C6A—C7—C7A—C10A−58.10 (12)C5—N1—C16—C15−164.46 (11)
C19—O4—C8—C9172.25 (10)C14—C15—C16—N1−32.34 (13)
C19—O4—C8—C7A−82.75 (12)C7—O2—C17—O3−0.49 (17)
C7—C7A—C8—O4−65.65 (12)C7—O2—C17—C18−179.47 (10)
C10A—C7A—C8—O4−172.64 (9)C8—O4—C19—O5−4.77 (17)
C7—C7A—C8—C950.22 (10)C8—O4—C19—C20174.69 (10)
C10A—C7A—C8—C9−56.77 (10)C22—O7—C21—O6−0.42 (18)
C7—O13—C9—C826.28 (11)C22—O7—C21—C10177.16 (10)
C7—O13—C9—C10−78.82 (10)C9—C10—C21—O699.42 (14)
O4—C8—C9—O1371.45 (11)C10A—C10—C21—O6−14.78 (18)
C7A—C8—C9—O13−46.92 (10)C9—C10—C21—O7−78.07 (12)
O4—C8—C9—C10−179.98 (9)C10A—C10—C21—O7167.73 (10)
C7A—C8—C9—C1061.65 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9B···O3i0.891.982.8576 (12)173
O9—H9C···O80.861.982.8365 (13)177
O10—H10C···O10.912.062.9516 (15)167

Symmetry codes: (i) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2114).

References

  • Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gurbanov, A. V., Nikitina, E. V., Airiyan, I. K., Zaytsev, V. P. & Khrustalev, V. N. (2009). Acta Cryst. E65, o2981. [PMC free article] [PubMed]
  • Hanson, J. R. (1991). Comp. Org. Synth.3, 705–719.
  • Hogeveen, H. & Van Krutchten, E. M. G. A. (1979). Top. Curr. Chem.80, 89–124.
  • Jung, M. E. & Street, L. J. (1985). Tetrahedron Lett.26, 3639–3642.
  • Keay, B. A., Rogers, C. & Bontront, J.-L. J. (1989). J. Chem. Soc. Chem. Commun. pp. 1782–1784.
  • Popp, F. D. & McEwen, W. E. (1958). Chem. Rev.58, 321–401.
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.
  • Zubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem.69, 432–438. [PubMed]
  • Zubkov, F. I., Zaitsev, V. P., Peregudov, A. S., Mikhailova, N. M. & Varlamov, A. V. (2007). Russ. Chem. Bull. Int. Ed.56, 1063–1079.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography